Mineralogy and Petrology

, Volume 65, Issue 3–4, pp 161–183

Platinum-group elements in porphyry copper deposits: a reconnaissance study

  • M. Tarkian
  • B. Stribrny
Article

Summary

Sulphide and flotation concentrates from 33 porphyry copper deposits have been investigated for platinum-group elements (PGE), Au, Cu and platinum-group minerals (PGM). The major sulphides in the samples studied are chalcopyrite and pyrite. Bornite is less frequent and molybdenite occurs in traces only. PGM (merenskyite, sperrylite and an unidentified Pd-Sb telluride) have been found as inclusions in chalcopyrite.

Pd and Pt are present in concentrations above the analytical detection limit (> 8 ppb) in 70% respectively 30% of the deposits studied. The contents of Os, Ir, Ru and Rh are below detection limits in all samples. The analytical results show that 7 deposits (six of island arc and one of continental margin setting) reveal relatively high Pd contents (130–1900 ppb) which are associated with high Au contents (1–28 ppm). In five of them discrete PGM can be identified in accordance with elevated levels of Pd. Correlations of Au, Pd and Pt point towards a common origin.

Even though the data base is relatively small, a trend is obvious, suggesting that Au-rich island arc porphyry copper deposits might host more Pd and Pt than the continental margin type ones. Other aspects of intrusive rocks, such as geological age, chemical composition and magma type do not seem to influence PGE contents.

Platingruppen-Elemente in porphyrischen Kupfer Lagerstätten: eine Überblicksstudie

Zusammenfassung

Es wurden Sulfid- und Flotationskonzentrate aus 33 Porphyry Kupfer Lagerstätten: auf Platingruppenelemente (PGE), Au, Cu and Platingruppenminerale (PGM) untersucht. Die Hauptsulfide im untersuchten Probenmaterial sind Chalkopyrit und Pyrit. Bornit ist weniger häufig and Molybdänit tritt nur in Spuren auf. An PGM wurden Merenskyit (in den Lagerstätten: Elacite, Majdanpek and Skouries), Sperrylith und ein nicht näher identifizierbares Pd-Sb- Tellurid (in der Lagerstätte Mamut) als Einschlüsse in Chalkopyrit festgestellt.

Pd ist in 70% and Pt in 30% der untersuchten Lagerstätten: nachweisbar (> 8 ppb), während die Gehalte von Os, Ir, Ru and Rh in allen Proben unterhalb der Nachweisgrenze liegen. In 7 Lagerstätten: (davon sechs vom Inselbogen- und eine vom Kontinentalrandtyp) wurden relativ hohe Pd-Konzentrationen (130–1900 ppb) festgestellt, die auch durch hohe Au-Gehalte (1–28 ppm) gekennzeichnet sind. In 5 Lagerstätten: sind entsprechend den hohen Pd-Gehalten PGM nachweisbar.

Geochemische Korrelationen zwischen Au, Pd and Pt weisen auf eine gemeinsame Herkunft dieser Metalle hin. Obwohl der Datenbestand noch relativ klein ist, ist ein Trend bereits sichtbar, daß Au-reiche Inselbogenporphyries Where Pd- und Pt- Gehalte erwarten lassen als der Kontinentalrand-Typ. Andere Aspekte wie geologisches Alter, Magmentyp and Chemismus der betreffenden Intrusivgesteine spielen bei der PGEFührung offensichtlich keine Rolle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad SN, Rose AW (1980) Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Econ Geol 75: 229–250Google Scholar
  2. Angelkov K (1974) The Medet molybdenum-copper deposits. In:Dragov P, Kolkovski B (eds) Twelve ore deposits of Bulgaria. IAGOD, Sofia, pp 102–13Google Scholar
  3. Bamford RW (1972) The Mount Fubilan (Ok Tedi) porphyry copper deposit, Territory of Papua and New Guinea. Econ Geol 67: 1019–1033Google Scholar
  4. Batchelder J (1977) Light stable isotope and fluid inclusion study of the porphyry copper deposit at Copper Canyon, Nevada. Econ Geol 72: 60–70Google Scholar
  5. Bodnar RJ, Beane RE (1980) Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona. Econ Geol 75: 876–893Google Scholar
  6. Bogdanov B (1982) Porphyry copper deposits in Bulgaria. Proceed VUZ, ser Geol and Surveying, Moscow, 6: 37–52 (in Russian)Google Scholar
  7. Bogdanov B (1986) Copper ore deposits in Bulgaria. Schriftenreihe der Erdwiss Kommissionen 8: 103–112Google Scholar
  8. Crocket JH (1981) Geochemistry of the platinum-group elements. In:Cabri LJ (ed) Platinum-group elements: mineralogy, geology, recovery. CIM Spec Vol 23: 47–64Google Scholar
  9. Dabovski C, Harkovska A, Kamenov B, Mavrudchiev B, Stanisheva-Vassileva G, Yanev Y (1991) A geodynamic model of the Alpine magmatism in Bulgaria. Geol Balcanica 21, 4: 3–15Google Scholar
  10. Dewey JF, Bird JM (1970) Mountain belts and the new global tectonics. J Geophys Res 75: 2625–2647Google Scholar
  11. Eastoe CJ (1978) A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ Geol 73: 721–748Google Scholar
  12. Eliopoulos DG, Economou-Eliopoulos M (1991) Platinum-group element and gold contents in the Skouries porphyry copper deposit, Chalkidiki Peninsula, Northern Greece. Econ Geol 86: 740–749Google Scholar
  13. Eliopoulos DG, Economou-Eliopoulos M, Strashimirov Str, Kovachev V, Zhelyskova-Panayotova M (1995) Gold, platinum and palladium content in Cu deposits from Bulgaria: a study in progress. Geol Soc Greece (Spec Publ) 4: 712–716Google Scholar
  14. Filimonova LE, Terekhovich SL (1972) Geochemical and mineralogical problems of the Bozshakol deposit. Izv Akad Nauk Kazakh SSR, Ser Geol 4: 60–68 (in Russian)Google Scholar
  15. Gammons CH, Bloom MS, Yu Y (1992) Experimental investigation of the hydrothermal geochemistry of platinum and palladium. I. Solubility of platinum and palladium sulphide minerals in NaCI/H2SO4 solutions at 300°C. Geochim Cosmochim Acta 56: 3881–3894Google Scholar
  16. Gilmour P (1982) Grades and tonnages of porphyry copper deposits. In:Titley SR (ed) Advances in geology of the porphyry copper deposits. Southwestern North America, Part I: 7–35Google Scholar
  17. Henley RW (1973) Solubility of gold in hydrothermal chloride solutions. Chem Geol 11: 73–87Google Scholar
  18. Jankovic S (1972) Temperature gradients in the formation of the Majdanpek copper deposits. Zb Rad rud-geol Fak 14: 49–55 (English summary)Google Scholar
  19. Kalogeropoulos SI (1986) The Skouries porphyry copper deposit, Chalkidiki Peninsula, N. Greece. In: International South European Symposium on Exploration Geochemistry, Athens, Greece 1986, Field Trips Guide Book. Institute of Geology and Mineralogy Exploration-Association of Exploration Geochemists, Athens, pp 33–42Google Scholar
  20. Karamata S, Knezevic V, Pécskay Z, Djordjevic M (1997) Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues Mineral Deposita 32: 452–458Google Scholar
  21. Kockel F, Mollat H, Gundlach H (1975) Hydrothermally altered and (copper) mineralized porphyritic instrusions in the Servomacedonian Massif (Greece). Mineral Deposita 10: 195–204Google Scholar
  22. Kosaka H, Wakita K (1978) Some geologic features of the Mamut porphyry copper deposit, Sabah, Malaysia. Econ Geol 73: 618–627Google Scholar
  23. Kudryavtsev YuK (1996) The Cu-Mo Deposits of Central Kazakhstan. In:Shatov V, Seltmann R, Kremenetsky A, Lehmann B, Propov V, Ermolov P (eds) Granite-related ore deposits of Central Kazakhstan and adjacent areas. INTAS-93-1783 Project, St. Petersburg, pp 119–144Google Scholar
  24. Mountain BW, Wood SA (1988) Chemical controls on the solubility, transport, and deposition, of platinum and palladium in hydrothermal solutions: a thermodynamic approach. Econ Geol 83: 492–510Google Scholar
  25. Mutschler FE, Griffin ME, Scott Stevens D, Shannon jr SS (1985) Precious metal deposits related to alkaline rocks in the North American Cordillera — a interpretive review. Trans Geol Soc S Afr 88: 355–377Google Scholar
  26. Nagano K, Takenouchi S, Imai H, Shoji T (1977) Fluid inclusion study of the Mamut porphyry copper deposit, Sabah, Malaysia. Mining Geol 27: 201–212Google Scholar
  27. Page RW, McDougall I (1972) Ages of mineralization of gold and porphyry copper deposits in the New Guinea highlands. Econ Geol 67: 1034–1048Google Scholar
  28. Petrunov R, Dragov P, Ignatov G, Neykov H, Kiev Ts, Vasileva N, Tsatsov V, Djunakov S, Doncheva K (1992) Hydrothermal PGE-mineralization in the elacite porphyry copper deposit (the Sredna Gora metallogenic zone, Bulgaria). Comptes rendus de l'Académie bulgare des Sciences 45 4: 37–40Google Scholar
  29. Piestrzynski A, Schmidt STh, Franco H (1994) Pd-minerals in the Sto. Tomas II, porphyry copper deposit, Tuba Benguet, Phillippines. Mineral Polonica 25, 2: 21–31Google Scholar
  30. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogenous or stratified microvolumes applying the model “PAP”. In:Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75Google Scholar
  31. Roedder E (1971) Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana and Climax, Colorado. Econ Geol 66: 98–120Google Scholar
  32. Rubin JN, Kyle JR (1997) Precious metal mineralogy in porphyry-, skarn-, and replacementtype ore deposits of the Ertsberg (Gunung Bijih) District, Irian Jaya, Indonesia. Econ Geol 92: 535–550Google Scholar
  33. Sassani DC, Shock EL (1990) Speciation and solubility of palladium in aqueous magmatichydrothermal solutions. Geology 18: 925–928Google Scholar
  34. Seward TM (1984) The transport and deposition of gold in hydrothermal systems. In:Foster RP (ed) Gold 82: the geology, geochemistry and genesis of gold deposits. Balkema, Rotterdam, pp 165–181Google Scholar
  35. Sillitoe RH (1979) Some thoughts on gold-rich porphyry copper deposits. Mineral Deposita 14: 161–174Google Scholar
  36. Sillitoe RH (1993) Gold-rich porphyry copper deposits: geological model and exploration implications. In:Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposit Modeling. Geol Assoc Canada, Special Paper 40: 465–478Google Scholar
  37. Solomon M (1990) Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology 18, 2: 630–633Google Scholar
  38. Spasov T (1965) Metalogenetske odlike majdanpeakog reona. Thesis, Rud geol fak BeogradGoogle Scholar
  39. Tarkian M, Koopmann G (1995) Platinum-group minerals in the Santo Tomas II (Philex) porphyry copper-gold deposit, Luzon Island, Phillippines. Mineral Deposita 30: 39–47Google Scholar
  40. Tarkian M, Eliopoulos DG, Economou-Eliopoulos M (1991) Mineralogy of precious metals in the Skouries porphyry copper deposit, Northern Greece. N Jb Miner Mh 12: 529–537Google Scholar
  41. Thompson JFH, Lang JR, Stanley CR (1999) Platinum group elements in alkaline porphyry deposits, British Columbia. Econ Geol (in press)Google Scholar
  42. Titley SR (1978) Copper, molybdenum and gold content of some porphyry copper systems of the Southwestern and Western Pacific. Econ Geol 73: 977–981Google Scholar
  43. Tokmakchieva M (1993) Behaviour of gold and silver in ore formation processes in the Panagurishte-Etropole region. Dev Bulgarian Mineral 52–55Google Scholar
  44. Vankanjac BB (1993) Gold contents in Majdanpek ore deposit. Thesis, Faculty of Geology, University of Belgrade, 78 ppGoogle Scholar
  45. Veranis N (1994) Geological structure and primary raw materials in the Chalkidiki peninsula. IGME Report, Athens (in Greek)Google Scholar
  46. Wilson JC (1978) Ore fluid-magma relationship in a vesicular quartz latite porphyry dike at Bingham, Utah. Econ Geol 73: 1287–1307Google Scholar
  47. Wood SA, Mountain BW, Pan P (1992) The aqueous geochemistry of platinum, palladium and gold: recent experimental constraints and a re-evaluation of theoretical predictions. Can Mineral 30: 955–981Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • M. Tarkian
    • 1
  • B. Stribrny
    • 2
  1. 1.Institute of Mineralogy and PetrologyUniversity of HamburgHamburgGermany
  2. 2.Federal Institute for Geosciences and Natural ResourcesHannoverGermany

Personalised recommendations