Mathematische Zeitschrift

, Volume 194, Issue 4, pp 565–571

On Gleason's decomposition forA (\(\bar D\))

  • Joaquín M Ortega Aramburu
Article
  • 31 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cartan, H.: Seminaire H. Cartan. Exposé21, 1 (1952)Google Scholar
  2. 2.
    Henkin, G.M.: Approximation of function in pseudoconvex domains and Leibenzon's theorem. Bull. Acad. Sci. Ser. Math. Astron. et Phys.19, 37–42 (1971)Google Scholar
  3. 3.
    Jakóbezak, P.: On Fornaess imbedding theorem. PreprintGoogle Scholar
  4. 4.
    Kerzman, N., Nagel, A.: Finitely generated ideals in certain function algebras. J. Funct. Anal.7, 212–215 (1971)Google Scholar
  5. 5.
    Lieb, I.: Die Cauchy-Riemannsche Differentialgleichung auf streng pseudoconvexen Gebieten: Stetige Randwerte. Math. Ann.199, 241–256 (1972)Google Scholar
  6. 6.
    Nagel, A.: Flatness criteria for modules of holomorphic function on\(\mathcal{O}_n \). Duke Math. J.40, 433–448 (1973)Google Scholar
  7. 7.
    Nagel, A.: On algebras of holomorphic function withC -boundary values. Duke Math. J.41, 527–535 (1974)Google Scholar
  8. 8.
    Ortega, J.M.a: Sur une extension du problème de Gleason dans les domaines pseudoconvexes. Ann. Inst. Fourier34, 4 (1984)Google Scholar
  9. 9.
    Øvrelid, N.: Generators of the maximal ideals ofA(\(\bar D\)). Pac. J. Math.39, 219–233 (1971)Google Scholar
  10. 10.
    Parrini, C., Primicerio, A.S.: A decomposition Theorem forA (D) in pseudoconvex domains. Boll. Unione Mat. Ital., Ser. B3, 111–120 (1984)Google Scholar
  11. 11.
    Tougeron, J.K.: Ideaux de Fonctions Differenciables. Berlin Heidelberg New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Joaquín M Ortega Aramburu
    • 1
  1. 1.Seeció de Matemàtiques de la Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations