Mathematische Zeitschrift

, Volume 197, Issue 1, pp 139–152

Each non-zero convolution operator on the entire functions admits a continuous linear right inverse

  • Reinhold Meise
  • B. Alan Taylor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baernstein, A. II: Representation of holomorphic boundary integrals. Transact. Am. Math. Soc.160, 27–37 (1971)Google Scholar
  2. 2.
    Berenstein, C.A., Taylor, B.A.: Interpolation problems in ℂn with applications to harmonic analysis. J. d'Analyse Math.38, 188–254 (1980)Google Scholar
  3. 3.
    Berenstein, C.A., Taylor, B.A.: On the geometry of interpolating varieties. pp. 1–25 in Seminaire Lelong-Skoda. Lecture Notes in Math.919. Berlin Heidelberg New York: Springer 1982Google Scholar
  4. 4.
    Djakov, P.B., Mityagin, B.S.: The structure of polynomial ideals in the algebra of entire functions. Studia Math.68, 85–104 (1980)Google Scholar
  5. 5.
    Ehrenpreis, L.: Mean periodic functions I. Am. J. Math.77, 293–328 (1955)Google Scholar
  6. 6.
    Hörmander, L.: An introduction to complex analysis in several variables. Princeton: Van Nostrand 1967Google Scholar
  7. 7.
    Kelleher, J.J., Taylor, B.A.: Closed ideals in locally convex algebras of entire functions. J. Reine Angew. Math.255, 190–209 (1972)Google Scholar
  8. 8.
    Köthe, G.: Topological vector spaces I. Berlin Heidelberg New York: Springer 1969Google Scholar
  9. 9.
    Malgrange, B.: Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier (Grenoble)6, 271–355 (1955/56)Google Scholar
  10. 10.
    Martineau, A.: Equations différentielles d'ordre infini. Bull. Soc. Math. Fr.95, 109–154 (1967)Google Scholar
  11. 11.
    Meise, R.: Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals. J. Reine Angew. Math.363, 59–95 (1985)Google Scholar
  12. 12.
    Meise, R., Momm, S., Taylor, B.A.: Splitting of slowly decreasing ideals in weighted algebras of entire functions. In: Berenstein, C.A. (ed.) Complex Analysis. (Lect. Notes Math., vol. 1276, pp. 229–252). Berlin Heidelberg New York: Springer 1987Google Scholar
  13. 13.
    Meise, R., Taylor, B.A.: Splitting of closed ideals in (DFN)-algebras of entire functions and the property (DN). Trans. Am. Math. Soc.302, 341–370 (1987)Google Scholar
  14. 14.
    Taylor, B.A.: Some locally convex spaces of entire functions, p. 431–467. Proc. Symp. Pure Math. XI (1968)Google Scholar
  15. 15.
    Taylor, B.A.: Linear extension operators for entire functions. Mich. Math. J.29, 185–197 (1982)Google Scholar
  16. 16.
    Treves, F.: Linear partial differential equations with constant coefficients. New York: Gordon and Breach 1966Google Scholar
  17. 17.
    Vogt, D.: Charakterisierung der Unterräume vons. Math. Z.,155, 109–117 (1977)Google Scholar
  18. 18.
    Vogt, D.: Subspaces and quotient spaces of (s), p. 167–187 in “Functional Analysis: Surveys and Recent Results”, K.-D. Bierstedt, B. Fuchssteiner (Eds.). North-Holland Math. Stud.27 (1977)Google Scholar
  19. 19.
    Vogt, D., Wagner, M.J.: Characterisierung der Quotientenräume vons und eine Vermutung von Martineau. Studia Math.67, 225–240 (1980)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Reinhold Meise
    • 1
  • B. Alan Taylor
    • 2
  1. 1.Mathematisches Institut der Universität DüsseldorfDüsseldorf 1Federal Republic of Germany
  2. 2.Department of MathematicsUniversity of MichiganMichiganAnn ArborUSA

Personalised recommendations