Advertisement

Mineralogy and Petrology

, Volume 57, Issue 1–2, pp 97–118 | Cite as

Petrology and geochemistry of sphalerite from the Cambrian VHMS deposits in the Rosebery-Hercules district, western Tasmania: Implications for gold mineralisation and Devonian metamorphic-metasomatic processes

  • Khin Zaw
  • R. R. Large
Article

Summary

Sphalerite is the major ore mineral in the Zn-rich, volcanic-hosted massive sulphide deposits of western Tasmania. These deposits have been affected by regional metamorphism to upper greenschist facies, and associated tectonic deformation related to the Devonian Tabberabberan Orogeny. The southern end of the Rosebery deposit has undergone metasomatic replacement related to a post-orogenic Devonian granite intrusion.

Sphalerite from VHMS deposits in the Rosebery district varies widely in colour, grain size and texture. Compositional variation of the sphalerites was studied for three purposes (1) to investigate effects of the Devonian overprinting, (2) to provide pressure (depth) estimates at the time of Fe-S-O replacement during the Devonian, and (3) to deduce the effect ofaFeS(aS2) on gold deposition and subsequent remobilisation.

Sphalerite from the Rosebery deposit shows an FeS range from 2.0 to 20.0 mole%, with a bimodal distribution; a mode of 16.0 mole% FeS was noted for the F(J) lens where Devonian metasomatism prevailed, whereas a mode of 2.4–4.0 mol% FeS was found for the other lenses. Sphalerite from the Hercules deposit has a range of 2.0–10.0 mole% FeS, whereas sphalerite from the South Hercules deposit ranges from 4.0-12.0 mole% FeS. VHMS sphalerites also contain minor copper, manganese and cadmium.

The bimodal distribution of FeS content in Rosebery sphalerite suggests that the primary VHMS mineralisation underwent at least two periods of post-depositional re-equilibration. The FeS content in sphalerite in equilibrium with hexagonal pyrrhotite and pyrite indicates that the Devonian replacement occurred at a pressure off 3.0 ± 0.5 kb, corresponding to 8.0 ± 0.1 km depth.

The relationship between FeS content in sphalerite and gold grades at Rosebery, Hercules and South Hercules displays complex patterns that reflect either variations in the initial depositional conditions an the seafloor (pH, temperature andaS2), or later Devonian metamorphic and metasomatic recrystallisation.

Zusammenfassung

Zinkblende ist das dominierende Erzmineral in den Zn-reichen, in vulkanischen Gesteinen beheimateten, massiven Sulfidlagerstätten West-Tasmaniens. Diese Lagerstätten sind von einer Regionalmetamorphose der oberen Grünschieferfazies und einer assoziierten Deformation, die der devonischen Tabberabberan Orogenese zuzuschreiben ist, überprägt worden. Das Südende der Rosebery Lagerstätte ist von einer metasomatischen Verdrängung, die mit einer post-orogenen, devonischen Granitintrusion im Zusammenhang steht, erfaßt worden.

Die Zinkblende von VHMS Lagerstätten des Rosebery Distriktes variiert weitgehend in ihrer Farbe, Korngröße und Textur. Die Variation der chemischen Zusammensetzung der Zinkblende wurde aus drei Gründen untersucht: (1) um die Effekte der devonischen Überprägung zu studieren, (2) um zu Abschätzungen des Druckes (Tiefe) zur Zeit der Fe-S-O Verdrängung während des Devons zu gelangen, und (3) um die Auswirkung vonaFeS (aS2) auf die Goldablagerung und folgende Remobilisation abzuleiten.

Der FeS Gehalt der Zinkblende der Rosebery Lagerstätte reicht von 2.0 bis 20.0 Mol%, mit einer bimodalen Verteilung; ein Maximum bei 16.0 Mol% FeS ist für die F(J) Linse charakteristisch, wo devonische Metasomatose vorherrscht, während ein zweites Maximum bei 2.0–4.0 Mol% FeS bei den anderen Linsen festgestellt wurde. Der FeS Gehalt der Zinkblende der Süd-Hercules Lagerstätte reicht von 4.0 bis 12.0 Mol%. Die VHMS Zinkblenden führen auch untergeordnet Kupfer, Mangan und Cadmium.

Die bimodale Verteilung des FeS Gehaltes in der Rosebery Zinkblende läßt vermuten, daß die VHMS Mineralisation, nach ihrer Bildung, von mindestens zwei Perioden der Reequilibrierung erfaßt worden ist. Der FeS Gehalt in der Zinkblende im Gleichgewicht mit hexagonalem Pyrrhotin und Pyrit weist darauf hin, daß die devonische Verdrängung bei einem Druck von 3.0 ± 0.5 kb, vergleichbar mit 8.0 ± 0.1 km Tiefe, stattgefunden hat.

Der Zusammenhang des FeS Gehalt in der Zinkblende mit den Goldgehalten in Rosebery, Hercules und Süd-Hercules ist komplex und spiegelt entweder unterschiedliche, primäre Bildungsbedingungen am Meeresboden (pH, Temperatur undaS2), oder spätere, devonische metamorphe und metasomatische Rekristallisation wider.

Keywords

Devonian Massive Sulphide Massive Sulphide Deposit Pyrrhotin Hexagonal Pyrrhotite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Petrologie und Geochemie der Zinkblende aus der kambrischen VHMS Lagerstätte im Roseberry-Hercules Distrikt, West-Tasmanien: Hinweise für Goldmineralisation und devonische, metamorphe-metasomatische Prozesse

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton PB Jr (1978) Some ore textures involving sphalerite from the Furutobe Mine, Akita Prefecture, Japan. Mining Geol (Japan) 28: 293–300Google Scholar
  2. Barton PB Jr, Toulmin P III (1966) Phase relations involving sphalerite in the Fe-Zn-S system. Econ Geol 61: 815–849Google Scholar
  3. Barton PB Jr, Skinner BJ (1979) Sulphide mineral stabilities, In:Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley, New York, pp 278–403Google Scholar
  4. Both RA (1966) The zoned ore deposits of the Zeehan mineral field. Thesis, University of Tasmania, Hobart, 343 pp (unpublished)Google Scholar
  5. Brathwaite R L (1974) The geology and origin of the Rosebery ore deposit, Tasmania. Econ Geol 69: 1086–1101Google Scholar
  6. Brill BA (1989) Trace element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia. Can Mineralogist 27: 263–274Google Scholar
  7. Bristol CC (1979) Application of sphalerite geobarometry to ores from the Ruttan Mine. Econ Geol 74: 1496–1503Google Scholar
  8. Bryndzia LT, Scott SD, Spry PG (1988) Sphalerite and hexagonal pyrrhotite geobarometer: experimental calibration and application to the metamorphosed sulphide ores at Broken Hill, Australia. Econ Geol 83: 1193–1204Google Scholar
  9. Bryndzia LT, Scott SD, Spry PG (1990) The sphalerite and hexagonal pyrrhotite geothermometer: correction and application. Econ Geol 85: 408–411Google Scholar
  10. Craig JR, Ljokjell P, Vokes FM (1984) Sphalerite compositional variations in sulphide ores of the Norwegian Caledonides. Econ Geol 79: 1727–1735Google Scholar
  11. Eldridge CS, Barton PB Jr, Ohmoto H (1983) Mineral texture and their bearing on formation of the Kuroko orebodies. In:Ohmoto H, Skinner BJ (eds) The Kuroko and related volcanogenic massive sulphide deposits. Econ Geol Mon 5: 241–281Google Scholar
  12. Ethier VG, Campbell FA, Both RA, Krouse HR (1976) Geological setting of the Sullivan orebody and estimates of temperature and pressure of metamorphism. Econ Geol 71: 1570–1588Google Scholar
  13. Green GR, Solomon M, Walshe JL (1981) The formation of the volcanic-hosted massive sulphide ore deposit at Rosebery, Tasmania. Econ Geol 76: 304–338Google Scholar
  14. Groves DI, Binns RA, Barrett FM, McQueen KG (1975) Sphalerite compositions from western Australian nickel deposits, a guide to equilibria below 300°C. Econ Geol 70: 391–396Google Scholar
  15. Halbach P, Pracejus B, Marten A (1993) Geology and mineralogy of massive sulphide ores from the central Okinawa Trough, Japan, Econ Geol 88: 2210–2225Google Scholar
  16. Hannington MD, Scott SD (1989) Gold mineralisation in volcanogenic massive sulphide deposits: implications of data from active hydrothermal vents in the modern seafloor. In:Keays RR, Ramsay WRH, Groves DI (eds) The geology of gold deposits: perspective in 1988. Econ Geol Mon 6: 491–507Google Scholar
  17. Herzig PM, Hannington MD, Fouquet Y, von Stackelberg U, Peterson S (1992) Conditions of gold mineralisation in Lau Basin back-arc sulphides. 11th Australian Geological Convention, Ballarat, January 18–25, 1992. Geol Soc Australia 32: 74 (Abstract)Google Scholar
  18. Herzig PM, Hannington MD, Fouquet Y, von Stackelberg U, Peterson S (1993) Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in seafloor hydrothermal systems of the southwest Pacific. Econ Geol 88: 2182–2209Google Scholar
  19. Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol Rev 4: 171–200Google Scholar
  20. Hutchison MN, Scott SD (1980) Sphalerite geobarometry applied to metamorphosed sulfide ores of the Swedish Caledonides and U.S. Appalachians. Norges Geol Unders Sokelse 360: 59–71Google Scholar
  21. Hutchison MN, Scott SD (1981) Sphalerite geobarometry in the Cu-Fe-Zn-S system. Econ Geol 76: 143–153Google Scholar
  22. Jonasson IR, Sangster DF (1978) Zn/Cd ratios for sphalerites from some Canadian sulfide ore samples. Geol Surv Can Paper No 78-1B: 195–201Google Scholar
  23. Khin Zaw (1976) The Cantung E-zone orebody, Tungsten, Northwest Territories: a major scheelite skarn deposit. Thesis, Queen's University, Kingston, Ontario, 409 pp (unpublished)Google Scholar
  24. Khin Zaw (1991) The effect of Devonian metamorphism and metasomatism on the mineralogy and geochemistry of the Cambrian VMS deposits in the Rosebery-Hercules district, western Tasmania. Thesis, University of Tasmania, Hobart, 302 pp (unpublished)Google Scholar
  25. Khin Zaw, Large RR, Huston DL (1996) Geology and geochemistry of a Devonian replacement zone in Cambrian Rosebery VHMS deposit, western Tasmania. Can Mineralogist (in press)Google Scholar
  26. Khin Zaw, Large RR, Huston DL (submitted) A chemical model for the Devonian remobilization process in the Cambrian VHMS Rosebery deposit, western Tasmania: constraints from metal zonation, fluid inclusions and thermodynamic calculations. Econ GeolGoogle Scholar
  27. Kojima S, Sugaki A (1985) Phase relations in the Cu-Fe-Zn-S system between 500° and 300°C under hydrothermal conditions. Econ Geol 80: 158–171Google Scholar
  28. Koski RA, Jonasson IR, Kadko DC, Smith VK, Wong FL (1994) Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. J Geophys Res 99: 4813–4832Google Scholar
  29. Leaman DE, Richardson RG (1989) The granites of west and northwest Tasmania—a geophysical interpretation. Tasmania Geol Surv Bull 66Google Scholar
  30. Lusk J, Ford CE (1978) Experimental extension of the sphalerite geothermometer to 10kbar. Am Mineralogist 63: 516–519Google Scholar
  31. Lusk J, Campbell FA, Krouse HR (1975) Application of sphalerite geobarometry and sulphur isotope geothermometry to ores of the Quemont mine, Noranda, Quebec. Econ Geol 70: 1070–1083Google Scholar
  32. Lusk J, Scott SD, Ford CE (1993) Phase relations in the Fe-Zn-S system to 5 kbars and temperatures between 325° and 150°C. Econ Geol 88: 1880–1903Google Scholar
  33. McLimans RK, Barnes HL, Ohmoto H (1980) Sphalerite stratigraphy of the Upper Mississippi Valley zinc-lead District, Southwest Wisconsin. Econ Geol 75: 351–361Google Scholar
  34. Mizuta T (1988) Interdiffusion rate of zinc and iron in natural sphalerite. Econ Geol 83: 1205–1220Google Scholar
  35. Mizuta T, Shimazaki H, Kaneda H, Lee SM (1990) Compositional variation of sphalerite from some gold-silver ore deposits in South Korea. J Coll Akita Univ Ser A 7: 203–217Google Scholar
  36. Mole NR (1983) Sphalerite composition in relation to deposition and metamorphism of the Foss stratiform Ba-Zn-Pb deposit, Aberfeldy, Scotland. Mineral Mag 47: 487–500Google Scholar
  37. Paradis S, Jonasson IR, Le Cheminant GM, Watkinson DH (1988) Two zinc-rich chimneys from the Plume Site, southern Juan de Fuca Ridge. Can Mineralogist 26: 637–654Google Scholar
  38. Ramsden AR, Kinealy KM, French DH (1991) Gold grades and iron content of sphaleriterelationship of possible genetic significance from Hellyer volcanogenic massive sulphide deposit of northwest Tasmania, Australia. Trans Inst Mining Met London Sect B: B42–B44Google Scholar
  39. Ringler RW (1979) Sphalerite geobarometry of the Calloway Mine, Ductown, Tennessee. Econ Geol 74: 937–942Google Scholar
  40. Scott SD (1973) Experimental calibration of the sphaletite geobarometer. Econ Geol 68: 466–474Google Scholar
  41. Scott SD (1976) Applicaton of the sphalerite geobarometer to regionally metamorphosed terrains. Am Mineralogist 61: 661–670Google Scholar
  42. Scott SD (1983) Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environment. Mineral Mag 47: 427–435Google Scholar
  43. Scott SD, Barnes HL (1971) Sphalerite geothermometry and geobarometry. Econ Geol 66: 653–669Google Scholar
  44. Scott SD, Both RA, Kissin SA (1977) Sulfide petrology of the Broken Hill region, New South Wales. Econ Geol 72: 1410–1425Google Scholar
  45. Shimizu M, Shimazaki H (1981) Application of the sphalerite geobarometer to some skarn-type ore deposit. Mineral Deposita 16: 45–50Google Scholar
  46. Solomon M, Vokes FM, Walshe JL (1987) Chemical remobilization of volcanic-hosted sulphide deposits at Rosebery and Mt. Lyell, Tasmania. In:Marshall B, Gilligan LB (eds) Mechanisms and chemical (re) mobilisation of metalliferous mineralisation. Ore Geol Rev 2: 173–190Google Scholar
  47. Spry PG, Wonder JD (1989) Manganese-rich garnet rocks associated with the Broken Hill lead-zinc-silver deposit, New South Wales. Can Mineralogist 27: 275–292Google Scholar
  48. Styrt MM, Brackmann AJ, Holland HD, Clark BC, Pisutha-Arnold V, Eldridge CS, Ohmoto H (1981) The mineralogy and isotopic composition of sulphur in hydrothermal sulphide/sulphate deposits on East Pacific Rise, 21°N latitude. Earth Planet Sci Lett 53: 82–390Google Scholar
  49. Sundblad K, Zachrisson E, Smeds S-A, Berglund B, Alinder C (1984) Sphalerite geobarometey and arsenopyrite geothermometry applied to metamorphosed sulphide ores in the Swedish Caledonides. Econ Geol 79: 1660–1668Google Scholar
  50. Toulmin III P, Barton Jr PB, Wiggins LB (1991) Commentary on the sphalerite geothermometer. Am Mineralogist 76: 1038–1051Google Scholar
  51. Urabe T (1974) Iron content of sphalerite coexisting with pyrite from some Kuroko deposits. Soc Mining Geol Jpn Spec Issue 6: 377–384Google Scholar
  52. Williams KL (1975) Compositions of sphalerites from the zoned hydrothermal lead-zinc deposits at Zeehan, Tasmania. Econ Geol 69: 657–672Google Scholar
  53. Wonder JR, Spry PG, Windom KE (1988) Geochemistry and origin of manganese-rich rocks related to iron-formation and sulphide deposits, western Georgia. Econ Geol 83: 1070–1081Google Scholar
  54. Xuexin S (1984) Minor elements and ore genesis of the Fankou lead-zinc deposit, China. Mineral Deposita 19: 95–104Google Scholar
  55. Zierenberg RA, Shanks III WC, Bischoff JL (1984) Massive sulfide deposits at 21°N, East Pacific Rise: chemical composition, sulfur isotopes, and phase equilibria. Geol Soc Am Bull 95: 922–929Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Khin Zaw
    • 1
  • R. R. Large
    • 1
  1. 1.Centre for Ore Deposit and Exploration StudiesUniversity of TasmaniaHobart, TasmaniaAustralia

Personalised recommendations