Mathematische Zeitschrift

, Volume 195, Issue 1, pp 69–78 | Cite as

Quotient spaces for semialgebraic equivalence relations

  • G. W. Brumfiel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, E.: On the real spectrum of a ring and its application to semi-algebraic geometry. Bull. Am. Math. Soc.15, 19–60 (1986)Google Scholar
  2. 2.
    Bröcker, L.: Real spectra and distribution of signatures. Lecture Notes in Mathematics No.959, Proceedings Géométrie Algébrique Réelle et Formes Quadratiques, Rennes 1981, 249–272. Berlin Heidelberg New York: Springer 1982Google Scholar
  3. 3.
    Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle. To appearGoogle Scholar
  4. 4.
    Brumfiel, G.W.: Partially ordered rings and semi-algebraic geometry. LMS Lecture Notes in Math. No.37. Cambridge: University Press 1979Google Scholar
  5. 5.
    Coste, M., Roy, M.-F.: La topologie du spectre réel. Contemp. Math.8, 27–59 (1982)Google Scholar
  6. 6.
    Delfs, H., Knebusch, M.: Semi-algebraic topology over a real closed field I: Paths and components in the set of rational points of an algebraic variety. Math. Z.177, 107–129 (1981)Google Scholar
  7. 7.
    Delfs, H., Knebusch, M.: Semi-algebraic topology over a real closed field II: Basic theory of semi-algebraic spaces. Math. Z.178, 175–213 (1981)Google Scholar
  8. 8.
    Delzell, C.: A constructive continuous solution to Hilbert's 17th problem and other results in semi-algebraic geometry. Ph.D. dissertation, Stanford University, 1980Google Scholar
  9. 9.
    Hironaka, H.: Triangulation of semi-algebraic sets. Proc. Am. Math. Soc. Symp. in Pure Math.29, 165–185 (1975)Google Scholar
  10. 10.
    Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math.81, 539–554 (1985)Google Scholar
  11. 11.
    Robson, R.: Embedding semi-algebraic spaces. Math. Z.183, 365–370 (1983)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. W. Brumfiel
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations