Advertisement

Mineralogy and Petrology

, Volume 67, Issue 3–4, pp 163–192 | Cite as

Mantle source heterogeneity in the Campanian Region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity

  • M. D'Antonio
  • L. Civetta
  • P. Di Girolamo
Article

Summary

Major, trace element and Sr-Nd-isotopic data on mafic volcanic rocks with shoshonitic affinity from the islands of Procida and Ventotene (Campanian Region, South Italy) are reported. Within-suite chemical and isotopic variations are interpreted in terms of open system differentiation processes held responsible for enrichment in a number of trace elements and for radiogenic Sr observed in both Procida and Ventotene volcanic sequences. Conversely, trace element contents and Sr-Nd-isotopic compositions of the least-evolved among the investigated samples are thought to reflect source region characteristics with only negligible crustal contamination of the primary magmas.

The data support an origin from distinct source regions for the primary magmas. In the case of Ventotene, the source would have been asthenospheric and/or lithospheric mantle with features similar to transitional mid-ocean ridge basalts (T-MORB), modified by enriching agents made up mainly of subducted slab-released components coming from marly sediments (about 7%) similar to cherts from Tuscan Apennines plus a limestone contribution. In the case of Procida, the source would have been asthenospheric and/or lithospheric mantle with a slightly more enriched T-MORB-like feature with respect to Ventotene, modified by slab-derived enriching agents, likely represented by a small amount of sediments (about 2.5%) of oceanic nature (mostly terrigenous/pelagic). These differences are constrained by lower Zr/Nb, Y/Nb, Sc/Nb, V/Nb, LILE/HFSE, LREE/HFSE and87Sr/86Sr, higher Ba/La and143Nd/144Nd ratios, as well as by the lack of a detectable negative Eu anomaly, in the least-evolved volcanic rocks of Procida, with respect to those of Ventotene, which show conversely a significant negative Eu anomaly. Thus, a sharp heterogeneity exists in the mantle beneath the Campanian Region. It is thought to be the consequence of two different slabs which are in contact along the Volturno River Plain tectonic line: a continental slab, seismically inactive, descending beneath the Latium Region, and an oceanic slab, seismically active, descending beneath the Calabria, up to the Campanian Region.

Keywords

Subduction Chert Lithospheric Mantle Primary Magma Mafic Volcanic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

De nouvelles analyses géochimiques d'éléments majeurs et en traces ainsi que des rapports isotopiques du Sr et du Nd sont été obtenues sur des roches volcaniques mafiques à affinité shoshonitiques provenant des îles de Procida et Ventotene (Région Campanienne, Italie du Sud). Les variations géochimiques et isotopiques observées au sein des séries volcaniques de ces deux îles sont interprétées en terme de processus de différenciation en système ouvert, tenu pour responsable d'un enrichissement d'un certain nombre d'éléments en traces et de leur composition en Sr radiogénique. Cependant, les teneurs en éléments traces et les compositions isotopiques en Sr et Nd des échantillons les moins évolués parmi ceux étudiés reflètent les caractéristiques de leur source, avec une contamination crustale très négligeable des magmas primitifs.

Ces données démontrent que des sources distinctes sont à l'origine des magmas primitifs. Pour Ventotene, cette source doit être un manteau asthénosphérique et/ou lithosphérique dont la signature est similaire à celle de basaltes transitionnels de dorsale océanique (T MORB), légèrement enrichie en éléments dérivants d'une croûte plongeant dans une subduction comme des sédiments mameux (pour environ 7%) analogues aux cherts des Appenins de Toscane et comportant un apport en calcaire. Dans le cas de Procida, cette source doit être un manteau asthénosphérique et/ou lithosphérique montrant une signature de type T-MORB légèrement plus enrichie qu' à Ventotene, également modifiée par un apport venant d'une croûte en subduction, probablement une faible quantité (environ 2.5%) de sédiments de nature océanique (principalement terrigène/pélagique). Ces différences sont attestées par des rapports Zr/Nb, Y/Nb, Sc/Nb, V/Nb, LILE/HFSE, LREE/HSFE and87Sr/86Sr plus bas et des rapports Ba/La et143Nd/144Nd plus harts, ainsi que par l'absence d'une anomalie en Eu dans les compositions des roches volcaniques les moins évoluées de Procida par rapport à celles de Ventotene, qui elles, au contraire, montrent une anomalie en Eu significative.

Ainsi, une importante hétérogénéité du manteau existe sous la Campanie. Cette hétérogénéité doit être la conséquence de la nature différente des croûtes en subduction et qui sont en contact le long de la ligne tectonique de la plaine de la rivière Volturno: an Nord-Ouest, une croûte continentale, sismiquement inactive, plonge sous le Latium alors qu'au Sud-Est, une croûte océanique, sismiquement active, plonge sous la Calabre et jusque sous la Campanie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alessio M, Bella F, Improta S, Belluomini G, Calderoni G, Cortesi C, Turi B (1974) University of Rome carbon-14 dates XII. Radiocarbon 16/3: 358–367Google Scholar
  2. Appleton JD (1972) Petrogenesis of potassium-rich lavas from the Roccamonfina volcano, Roman Region, Italy. J Petrol 13-3: 425–456Google Scholar
  3. Ayuso RA, De Vivo B, Rolandi G, Seal RR, Paone A (1998) Geochemical and isotopic (NdPb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J Volcanol Geotherm Res 82: 53–78Google Scholar
  4. Barberi F, Borsi S, Ferrara G, Innocenti F (1967) Contributo alla conoscenza vulcanologica e magmatologica delle isole dell'arcipelago pontino. Mem Soc Geol Ital 6: 581–606Google Scholar
  5. Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26: 191–221Google Scholar
  6. Ben Othman D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94: 1–21Google Scholar
  7. Brownlow AH (1979) Geochemistry. Prentice-Hall, Englewood Cliffs, 498 ppGoogle Scholar
  8. Caprarelli G, Togashi S, De Vivo B (1993) Preliminary Sr and Nd isotopic data for recent lavas from Vesuvius volcano. J Volcanol Geotherm Res 58: 377–381Google Scholar
  9. Carter SR, Evensen NM, Hamilton PJ, O'Nions RK (1978) Continental volcanics derived from enriched and depleted source regions: Nd- and Sr-isotope evidence. Earth Planet Sci Lett 37: 401–408Google Scholar
  10. Civetta L, Santacroce R (1992) Steady state magma supply in the last 3,400 years of Vesuvius activity. Acta Volcanol, Marinelli Volume 2: 147–159Google Scholar
  11. Civetta L, Innocenti F, Manetti P, Peccerillo A, Poli G (1981) Geochemical characteristics of potassic volcanics from Mts. Ernici (Southern Latium, Italy). Contrib Mineral Petrol 78: 37–47Google Scholar
  12. Civetta L, D'Antonio M, Paone E, Santacroce R (1987) Isotopic studies of the products of the 472 A.D. Pollena eruption (Somma-Vesuvius). Boll G.N.V. III: 263–271Google Scholar
  13. Civetta L, Francalanci L, Manetti P, Peccerillo A (1989) Petrological and geochemical variations across the Roman Comagmatic Province: inference on magma genesis and crust-mantle evolution. In:Boriani A, Bonafede M, Piccardo GB, Vai GB (eds) The lithosphere in Italy — advances in earth science research. Acc Naz Lincei, Atti Conv Lincei Rome, pp 249–269Google Scholar
  14. Civetta L, Carluccio E, Innocenti F, Sbrana A, Taddeucci G (1991a) Magma chamber evolution under the Phlegraean Fields during the last 10 ka: trace element and isotope data. Eur J Mineral 3: 415–428Google Scholar
  15. Civetta L, Galati R, Santacroce R (1991b) Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull Volcanol 53: 287–300Google Scholar
  16. Civetta L, Gallo G, Orsi G (1991c) Sr- and Nd-isotope and trace-element constraints on the chemical evolution of the magmatic system of Ischia (Italy) in the last 55 ka. J Volcanol Geotherm Res 46: 213–230Google Scholar
  17. Civetta L, D'Antonio M, Orsi G, Tilton GR (1998) The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel: petrogenesis and characteristics of the mantle source region. J Petrol 39: 1453–1491Google Scholar
  18. Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in Central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28: 221–240Google Scholar
  19. Conticelli S, Civetta L, D'Antonio M, Peccerillo A (1994) Mantle metasomatism versus crustal contamination in the genesis of K-rich magmas: Sr and Nd isotopes of ultrapotassic and potassic rocks from the Italian peninsula. Eighth Int Conf on Geochron Cosmochronol and Isot Geol, Berkeley CA Abstracts Volume, p 66Google Scholar
  20. Cousens BL, Allan, JF, Gorton, MP (1994) Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea: Ocean Drilling Program Sites 797 and 794. Contrib Mineral Petrol 117: 421–434Google Scholar
  21. Cox KG, Hawkesworth CJ, O'Nions RK, Appleton JD (1976) Isotopic evidence for the derivation of some Roman Region volcanics from anomalously enriched mantle. Contrib Mineral Petrol 56: 173–180Google Scholar
  22. Cundari A (1980) Role of Subduction in the genesis of leucite-bearing rocks: facts or fashion? Contrib Mineral Petrol 73: 432–434Google Scholar
  23. D'Antonio M (1991) Petrologia e geochimica dei prodotti meno evoluti di serie shoshonitica della Campania. Thesis, University “Federico II” of Napoli, Italy, 287 ppGoogle Scholar
  24. D'Antonio M, Di Girolamo P (1994) Petrological and geochemical study of mafic shoshonitic volcanics from Procida-Vivara and Ventotene islands (Campanian Region, South Italy). Acta Volcanol 5: 69–80Google Scholar
  25. D'Antonio M, Tilton GR, Civetta L (1996) Petrogenesis of Italian alkaline lavas deduced from Pb-Sr-Nd relationships. In:Basu A, Hart SR (eds) Earth processes: reading the isotopic code. Am Geophys Un Monograph Series 95: 253–267Google Scholar
  26. D'Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, de Vita S, Di Vito MA, Isaia R (1999) The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. J Volcanol Geotherm Res (in press)Google Scholar
  27. Davidson JP (1987) Crustal contamination versus subduction zone enrichment: examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks. Geochim Cosmochim Acta 51: 2185–2198Google Scholar
  28. De Astis G, La Volpe L, Peccerillo A, Civetta L (1997) Volcanological and petrological evolution of Vulcano island (Aeolian Arc, southern Tyrrhenian Sea). J Geophys Res 102: 8021–8050Google Scholar
  29. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53: 189–202Google Scholar
  30. DePaolo DJ (1988) Neodymium isotope geochemistry — an introduction. Springer, Berlin Heidelberg New York Tokyo, 187 ppGoogle Scholar
  31. Di Girolamo P (1978) Geotectonic settings of Miocene-Quaternary volcanism in and around the Eastern Tyrrhenian Sea Border (Italy) as deduced from major element geochemistry. Bull Volcanol 41-3: 229–250Google Scholar
  32. Di Girolamo P (1987) Orogenic and anorogenic mantle-source components in the “anomalous” post-collisional peri-Tyrrhenian volcanics (Italy). Boll Soc Geol Ital 106: 757–766Google Scholar
  33. Di Girolamo P, Stanzione D (1973) Lineamenti geologici e petrologici dell'isola di Procida. Rend Soc Ital Mineral Petrol 29: 81–125Google Scholar
  34. Eggler DH (1978) The effects of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system. Am J Sci 278: 305–343Google Scholar
  35. Ellam RM, Hawkesworth CJ (1988) Elemental and isotopic variations in subduction related basalts: evidence for a three component model. Contrib Mineral Petrol 98: 72–80Google Scholar
  36. Faure G (1991) Principles and applications of inorganic geochemistry. Macmillan, New York, 626 ppGoogle Scholar
  37. Fedi M, Nunziata C, Rapolla A (1991) The Campania — Campi Flegrei area: a contribution to discern the best structural model from gravity interpretation. J Volcanol Geotherm Res 48: 51–59Google Scholar
  38. Francalanci L, Barbieri M, Manetti P, Peccerillo A, Tolomeo L (1988) Sr isotopic systematics in volcanic rocks from the island of Stromboli, Italy (Aeolian Arc). Chem Geol (Isot Geosci Sect) 73: 109–124Google Scholar
  39. Francalanci L, Manetti P, Peccerillo A, Keller J (1993) Magmatological evolution of the Stromboli volcano (Aeolian Arc, Italy): inferences from major and trace element and Sr isotopic composition of lavas and pyroclastic rocks. Acta Vulcanol 3: 127–151Google Scholar
  40. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19: 463–513Google Scholar
  41. Gianelli G, Puxeddu M (1979) An attempt at classifying the Tuscan Paleozoic: geochemical data. Mem Soc Geol It 20: 435–446Google Scholar
  42. Giardini D, Velonà M (1991) The deep seismicity of the Tyrrhenian Sea. Terra Nova 3: 57–64Google Scholar
  43. Giese P, Morelli C (1973) Structural model of Italy, scale 1:1,000,000. C.N.R., RomeGoogle Scholar
  44. Gill J, Whelan P (1989) Early rifting of an oceanic island arc (Fiji) produced shoshonitic to tholeiitic basalts. J Geophys Res 94: 4561–4578Google Scholar
  45. Guerra I, Currà MF, Moretti A (1991) Sull'attendibilità della localizzazione dei microterremoti intermedi e profondi nel Tirreno S. orientale. Atti X Conv Gr Naz Geof Terra Solida, C.N.R. 1: 95–106Google Scholar
  46. Hawkesworth CJ, Vollmer R (1979) Crustal contamination versus enriched mantle:143Nd/144Nd and87Sr/86Sr evidence from the italian volcanics. Contrib Mineral Petrol 69: 151–165Google Scholar
  47. Henderson P (ed) (1984) Rare Earth Element geochemistry. Elsevier, Amsterdam, 510 ppGoogle Scholar
  48. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90: 297–324Google Scholar
  49. Hole MJ, Saunders AD, Marriner GF, Tarney J (1984) Subduction of pelagic sediments: implications for the origin of Ce-anomalous basalts from the Mariana Islands. J Geol Soc Lond 141: 453–472Google Scholar
  50. Iannaccone G, Scarcella G, Scarpa R (1985) Subduction zone geometry and stress patterns in the Tyrrhenian Sea. Pageoph 123: 819–836Google Scholar
  51. Ippolito F, D'Argenio B, Pescatore TS, Scandone P (1975) Structural-stratigraphic units and tectonic framework of Southern Apennines. In:Squires (ed) Geology of Italy. Lybian Soc Earth Sci, L.A.R.Google Scholar
  52. Langmuir CH, Bender JF, Bence AE, Hanson GN, Taylor SR (1977) Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. Earth Planet Sci Lett 36: 133–156Google Scholar
  53. Le Bas M-J, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27-3: 745–750Google Scholar
  54. Le Roex AP (1987) Source regions of mid-ocean ridge basalts: evidence for enrichment processes. In:Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 389–422Google Scholar
  55. Lirer L, Rolandi G, Rubin M (1991)14C age of the “Museum Breccia” (Campi Flegrei) and its relevance for the origin of the Campanian Ignimbrite. J Volcanol Geotherm Res 48: 223–227Google Scholar
  56. McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102: 358–374Google Scholar
  57. McKenzie D, O'Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32: 1021–1091Google Scholar
  58. McKenzie D, O'Nions RK (1995) The source regions of ocean island basalts. J Petrol 36: 133–159Google Scholar
  59. Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In:Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 313–361Google Scholar
  60. Métrich N, Santacroce R, Savelli C (1988) Ventotene, a potassic quaternary volcano in central Tyrrhenian Sea. Rend Soc Ital Mineral Petrol, Marcello Carapezza Volume 43: 1195–1213Google Scholar
  61. Müller D, Rock NMS, Groves DI (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineral Petrol 46: 259–289Google Scholar
  62. Panza GF, Suhadolc P (1990) Properties of the lithosphere in collisional belts in the Mediterranean - a review. Tectonophysics 182: 39–46Google Scholar
  63. Pappalardo L, Civetta L, D'Antonio M, Deino A, Di Vito MA, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12ka) eruptions. J Volcanol Geotherm Res (in press)Google Scholar
  64. Patacca E, Scandone P (1989) Post-Tortonian mountain building in the Apennines. The role of passive sinking of a relic lithospheric slab. In:Boriani A, Bonafede M, Piccardo GB, Vai GB (eds) The lithosphere in Italy — advances in earth science research. Acc Naz Lincei, Atti Conv Lincei, Rome, pp 157–169Google Scholar
  65. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In:Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, Chichester, pp 525–548Google Scholar
  66. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In:Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249Google Scholar
  67. Peccerillo A (1985) Roman Comagmatic Province (central Italy): evidence for subduction-related magma genesis. Geology 13: 103–106Google Scholar
  68. Peccerillo A (1990) On the origin of the Italian potassic magmas — Comments. Chem Geol 85: 183–196Google Scholar
  69. Peccerillo A, Manetti P (1985) The potassium alkaline volcanism of central-southern Italy: a review of the data relevant to petrogenesis and geodynamic significance. Trans Geol Soc S Afr 88: 379–394Google Scholar
  70. Piochi M, Civetta L, Orsi G (1999) Mingling in the magmatic system of Ischia (Italy) in the past 5 ka. Mineral Petrol 66: 227–258Google Scholar
  71. Poli G, Manetti P, Peccerillo A, Cecchi A (1977) Determinazione di alcuni elementi del gruppo delle terre rare in rocce silicatiche per attivazione neutronica. Rend Soc Ital Mineral Petrol 33: 755–763Google Scholar
  72. Rhodes JM (1981) Characteristics of primary basaltic magmas. In: Basaltic Volcanism Study Project: Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, pp 409–432Google Scholar
  73. Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contrib Mineral Petrol 90: 244–257Google Scholar
  74. Rosi M, Sbrana A, Vezzoli, L (1988) Stratigrafia delle isole di Procida e Vivara. Boll G.N.V. IV: 500–525Google Scholar
  75. Royden L, Patacca E, Scandone P (1987) Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust-belt and foredeep-basin evolution. Geology 15: 714–717Google Scholar
  76. Santacroce R, Bertagnini A, Civetta L, Landi P, Sbrana A (1993) Eruptive dynamics and petrogenetic processes in a very shallow magma reservoir: the 1906 eruption of Vesuvius. J Petrol 34: 383–425Google Scholar
  77. Sekine T, Wyllie PJ (1982) Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol 79: 368–374Google Scholar
  78. Serri G (1990) Neogene-Quaternary magmatism of the Tyrrhenian Region: characterization of the magma sources and geodynamic implications. Mem Soc Geol Ital 41: 219–242Google Scholar
  79. Serri G, Innocenti F, Manetti P (1993) Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 223: 117–147Google Scholar
  80. Spakman W (1990) Tomographic images of the upper mantle below Central Europe and the Mediterranean. Terra Nova 2: 542–553Google Scholar
  81. Suhadolc P, Marson I, Panza GF (1991) Crust-mantle structural properties as a possible general framework for the interpretation of Cainozoic magmatism. Plinius (Ital Suppl of Eur J Mineral) 6: 21–23Google Scholar
  82. Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res 29: 293–309Google Scholar
  83. Thirlwall MF, Smith TE, Graham AM, Theodorou N, Hollings P, Davidson JP, Arculus RJ (1994) High field strength element anomalies in arc lavas: source or process? J Petrol 35: 819–838Google Scholar
  84. Thompson RN (1977) Primary basalts and magma genesis III. Alban Hills, Roman Comagmatic Province, Central Italy. Contrib Mineral Petrol 60: 91–108Google Scholar
  85. Thornton I (1983) Applied environmental geochemistry. Academic Press, London, 501 ppGoogle Scholar
  86. Vollmer R (1976) Rb-Sr and U-Th-Pb systematics of alkaline rocks: the alkaline rocks from Italy. Geochim Cosmochim Acta 40: 283–295Google Scholar
  87. Vollmer R (1977) Isotopic evidence for genetic relations between acid and alkaline rocks in Italy. Contrib Mineral Petrol 60: 109–118Google Scholar
  88. Vollmer R (1989) On the origin of the Italian potassic magmas, 1. A discussion contribution. Chem Geol 74: 229–239Google Scholar
  89. Vollmer R, Hawkestivorth CJ (1980) Lead isotopic composition of the potassic rocks from Roccamonfina (South Italy). Earth Planet Sci Lett 47: 91–101Google Scholar
  90. Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104: 381–397Google Scholar
  91. Wendlandt RF, Eggler DH (1980) The origins of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures. Am J Sci 280: 421–458Google Scholar
  92. White WM, Dupre B, Vidal P (1985) Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochim Cosmochim Acta 49: 1875–1886Google Scholar
  93. Wilkinson JFG (1982) The genesis of mid-ocean ridge basalt. Earth Sci Rev 18: 1–57Google Scholar
  94. Wilkinson M (1989) Igneous petrogenesis. Unwyn Hyman, London, 466 ppGoogle Scholar
  95. Wood DA (1979) A variably veined suboceanic upper mantle. Genetic significance for midoceanic ridge basalts from geochemical evidence. Geology 7: 499–503Google Scholar
  96. Woodhead JD, Fraser DG (1985) Pb, Sr and10Be isotopic studies of volcanic rocks from the Northern Mariana Islands. Implications for magma genesis and crustal recycling in the Western Pacific. Geochim Cosmochim Acta 49: 1925–1930Google Scholar
  97. Wyllie PJ (1978) Mantle fluid compositions buffered in peridotite-CO2-H2O by carbonates, amphibole, and phlogopite. J Geol 86: 687–713Google Scholar
  98. Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol 79: 375–380Google Scholar
  99. Zartman RE, Doe BR (1981) Plumbotectonics — The model. Tectonophysics 75: 135–162Google Scholar
  100. Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14: 493–571Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • M. D'Antonio
    • 1
  • L. Civetta
    • 1
    • 2
  • P. Di Girolamo
    • 3
  1. 1.Dipartimento Geofisica e VulcanologiaUniversity “Federico II”NapoliItaly
  2. 2.Osservatorio VesuvianoNapoliItaly
  3. 3.Dipartimento Scienze della TerraUniversity “Federico II”NapoliItaly

Personalised recommendations