Advertisement

Journal of Materials Science

, Volume 22, Issue 9, pp 3041–3086 | Cite as

Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride

  • G. Ziegler
  • J. Heinrich
  • G. Wötting
Review

Abstracts

Some aspects of processing, microstructure and properties of the various types of silicon nitride are discussed. Special emphasis is placed on the relationships between powder properties, process conditions, densification and microstructure, as well as the interdependence between microstructure and properties. After summarizing the areas of crystal structure and thermodynamic properties, and processing of the different types of Si3N4, the state-of-the-art of dense and reaction-bonded silicon nitride is given. For both types the formation mechanisms and microstructure, relationships between powder properties, additives (in the case of dense Si3N4), process conditions, and densification and microstructure, as well as data and microstructural effects of various mechanical, thermal and thermo-mechanical properties, are outlined. Advanced processing techniques, such as sintering, gas-pressure sintering, post-sintering, and the different routes of hot-isostatic pressing (starting with powder compacts, reaction-bonded Si3N4 or pre-sintered Si3N4 and the resulting properties, are discussed.

Keywords

Polymer Silicon Microstructure Crystal Structure Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. L. Riley, (ed.), “Nitrogen Ceramics” (Noordhoff-Leyden, 1977).Google Scholar
  2. 2.
    W. Bunk, M. Böhmer and H. Kissler, (eds), “Keramische Komponenten für Fahrzeug-Gasturbinen”, Vols I to III (Springer-Verlag, Berlin, 1984).Google Scholar
  3. 3.
    E. M. Lende, R. N. Katz andJ. J. Burke (eds), “Ceramics for High-Performance Applications”, Vol. III (Plenum, New York, London, 1979).Google Scholar
  4. 4.
    F. L. Riley (ed.), “Progress in Nitrogen Ceramics” (Martinus Nijhoff, 1983).Google Scholar
  5. 5.
    K. H. Jack, The Fabrication of Dense Nitrogen Ceramics, in “Hayne-Palmour IV: Processing of Crystalline Ceramics”, Vol. 11 (Materials Science Research, Plenum, New York, 1978) p. 561.Google Scholar
  6. 6.
    F. F. Lange,Int. Met. Rev. 1 (1980) 1.Google Scholar
  7. 7.
    G. Ziegler,Z. Werkstofftech. 14 (1983) 147.Google Scholar
  8. 8.
    Idem, ibid. 14 (1983) 189.Google Scholar
  9. 9.
    J. W. Edington, D. J. Rowcliffe andJ. L. Henshall,Powder Met. Int. 7 (1975) 82.Google Scholar
  10. 10.
    Idem, ibid. 7 (1975) 136.Google Scholar
  11. 11.
    D. C. Larsen andJ. W. Adams, “Evaluation of Ceramics and Ceramic Composites for Turbine Engine Applications”, IIT-Research Institute, Semiannual Interim Technical Report No. 13, June 1983; Contract F 33615-82-C-5101.Google Scholar
  12. 12.
    I. B. Cutler andW. J. Croft,Powder Met. Int. 6 (1974) 82.Google Scholar
  13. 13.
    Idem, ibid. 6 (1974) 144.Google Scholar
  14. 14.
    D. R. Messier andW. J. Croft, Silicon Nitride, in “Preparation and Properties of Solid State Materials”, Vol. 7, edited by W. R. Wilcox (Marcel Dekker, New York, Basel, 1982) pp. 131–220.Google Scholar
  15. 15.
    D. R. Messier andM. M. Murphy, “An Annotated Bibliography on Silicon Nitride for Structural Applications” (Metals and Ceramics Information Center, Battelle, Columbus, Ohio, MCIC-79-41, 1979).Google Scholar
  16. 16.
    D. Hardie andK. H. Jack,Nature 180 (1957) 332.Google Scholar
  17. 17.
    S. N. Ruddlesden andP. Popper,Acta Crystallogr. 11 (1958) 465.Google Scholar
  18. 18.
    S. Wild, P. Grieveson andK. H. Jack,Special Ceram. 5 (1972) 385.Google Scholar
  19. 19.
    H. Feld, P. Ettmayer andI. Petzenhauser,Ber. Dt. Keram. Ges. 51 (1974) 127.Google Scholar
  20. 20.
    C. M. B. Henderson andD. Taylor,Trans. Brit. Ceram. Soc. 74 (1975) 49.Google Scholar
  21. 21.
    K. Blegen,Special Ceram. 6 (1975) 223.Google Scholar
  22. 22.
    P. E. D. Morgan, Research on Densification, Character and Properties of Dense Silicon Nitride; Franklin Institute, Philadelphia, TR AD 778 373 (1974).Google Scholar
  23. 23.
    D. R. Messier andF. L. Riley, in “Nitrogen Ceramics”, edited by F. L. Riley (Noordhoff Leyden, 1977) pp. 141–9.Google Scholar
  24. 24.
    G. Ziegler andJ. Heinrich,Sci. Ceram. 11 (1981) 511.Google Scholar
  25. 25.
    W. P. Clancy,Microscope 22 (1974) 279.Google Scholar
  26. 26.
    K. H. Jack, in “Nitrogen Ceramics”, edited by F. L. Riley (Noordhoff Leyden, 1977) pp. 109–28.Google Scholar
  27. 27.
    D. P. Thompson, P. Korgul and A. Hendry, in “Progress in Nitrogen Ceramics“, edited by F. L. Riley (Matinus-Nijhoff, 1983) pp. 61–74.Google Scholar
  28. 28.
    L. J. Gauckler andG. Petzow, in “Nitrogen Ceramics”, edited by F. L. Riley (Noordhoff Leyden, 1977) pp. 41–62.Google Scholar
  29. 29.
    D. P. Thompson andL. J. Gauckler,J. Am. Ceram. Soc. 60 (1977) 470–1.Google Scholar
  30. 30.
    S. Hampshire, H. K. Park, D. P. Thompson andK. H. Jack,Nature 274 (1978) 880.Google Scholar
  31. 31.
    P. Greil andG. Petzow, in “Keramische Komponenten für Fahrzeug-Gasturbinen”, edited by W. Bunk, M. Böhmer and H. Kissler, Vol. III (Springer-Verlag, Berlin, 1984).Google Scholar
  32. 32.
    K. H. Jack, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) pp. 45–60.Google Scholar
  33. 33.
    S. Prochazka andC. D. Greskovich, Development of a Sintering Process for High-Performance Silicon Nitride, AMMRC TR 78-32 (1978).Google Scholar
  34. 34.
    S. C. Singhal,Ceramurg. Int. 2 (1976) 123.Google Scholar
  35. 35.
    G. Wötting, Thesis, TU Berlin (1983).Google Scholar
  36. 36.
    K. Kijima andS. Shirasaki,J. Chem. Phys. 65 (1976) 2668.Google Scholar
  37. 37.
    H. Salmang andH. Scholze, “Die physikalischen and chemischen Grundlagen der Keramik” (Springer-Verlag, Berlin, 1968).Google Scholar
  38. 38.
    A. J. Moulson,J. Mater. Sci. 14 (1979) 1017.Google Scholar
  39. 39.
    G. Wotting andG. Ziegler,Sprechsaal 119 (1986) pp. 265, 555, continued 1987.Google Scholar
  40. 40.
    E. Gugel, A. F. Fickel andH. Kessel,Powder Met. Int. 6 (1974) 136.Google Scholar
  41. 41.
    L. J. Bowen, R. J. Weston, T. G. Carruthers andR. J. Brook,J. Mater. Sci. 13 (1978) 341.Google Scholar
  42. 42.
    G. Ziegler, L. D. Bentsen andD. P. H. Hasselman,J. Am. Ceram. Soc. 64 (1981) C350.Google Scholar
  43. 43.
    F. F. Lange,ibid. 56 (1973) 518.Google Scholar
  44. 44.
    G. R. Terwilliger andF. F. Lange, United States Patent 3 992 497, 16 November (1976).Google Scholar
  45. 45.
    C. D. Greskovich andJ. H. Rosolowski,J. Am. Ceram. Soc. 59 (1976) 336.Google Scholar
  46. 46.
    M. Mitomo,J. Mater. Sci. 11 (1976) 1103.Google Scholar
  47. 47.
    H. F. Priest, G. L. Priest andG. E. Gazza,J. Am. Ceram. Soc. 60 (1977) 80.Google Scholar
  48. 48.
    A. Giachello, P. C. Martinengo, G. Tommasini andP. Popper,J. Mater. Sci. 14 (1979) 2825.Google Scholar
  49. 49.
    R. Pompe andR. Carlsson, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) pp. 219–24.Google Scholar
  50. 50.
    G. Wotting andH. Hausner,ibid., p. 211.Google Scholar
  51. 51.
    P. Popper, “Problems in Sintering Silicon Nitride”, Research Paper no. 699 (British Ceramic Society, October 1978).Google Scholar
  52. 52.
    J. A. Mangels andG. J. Tennenhouse,Am. Ceram. Soc. Bull. 59 (1980) 1216.Google Scholar
  53. 53.
    Idem, ibid. 59 (1980) 1222.Google Scholar
  54. 54.
    A. Larker, Hot-Isostatic Pressing of Shaped Silicon Nitride Parts, in “High-Pressure Science and Technology”, Vol. 2, edited by K. D. Tummerhans and M. S. Barber (Plenum, New York, 1979).Google Scholar
  55. 55.
    J. Heinrich andM. Böhmer,Sci. Ceram. 11 (1981) 439.Google Scholar
  56. 56.
    H. Larker, AGARD Conference Proceedings no. 276, “Ceramics for Turbine Applications” (1979) 24/1-24/8, edited by E. Campo and P. Martinengo, AGARD Rep. no. 651 (1976).Google Scholar
  57. 57.
    G. Ziegler andG. Wötting,Int. J. High Tech. Ceram. 1 (1985) 31.Google Scholar
  58. 58.
    W. D. Kingery,J. Appl. Phys. 30 (1959) 301.Google Scholar
  59. 59.
    H. Knoch andG. Ziegler,Sci. Ceram. 9 (1977) 494.Google Scholar
  60. 60.
    H. Knoch andG. E. Gazza,Ceramurg. Int. 6 (1980) 51.Google Scholar
  61. 61.
    S. Hampshire andK. H. Jack,Special Ceram. 7 (1981) 37.Google Scholar
  62. 62.
    P. Drew andM. H. Lewis,J. Mater. Sci. 9 (1974) 261.Google Scholar
  63. 63.
    F. F. Lange,J. Am. Ceram. Soc. 62 (1979) 428.Google Scholar
  64. 64.
    G. Wötting andG. Ziegler,Ceramurg. Int. 10 (1984) 18.Google Scholar
  65. 65.
    Idem, Sci. Ceram. 12 (1983) 361.Google Scholar
  66. 66.
    D. R. Clarke andG. Thomas,J. Am. Ceram. Soc. 61 (1978) 114.Google Scholar
  67. 67.
    D. R. Clarke,ibid. 64 (1981) 601.Google Scholar
  68. 68.
    T. M. Shaw, O. L. Krivanek andG. Thomas,ibid. 62 (1979) 305.Google Scholar
  69. 69.
    R. E. Loehman,J. Non-Cryst. Solids 42 (1980) 433.Google Scholar
  70. 70.
    G. Schwier, in “Keramische Komponenten für Fahrzeug-Gasturbinen”, Vol. III, edited by W. Bunk, M. Böhmer and H. Kissler (Springer-Verlag, Berlin, 1984) p. 55.Google Scholar
  71. 71.
    S. T. Buljan andP. E. Stermer, US Patent 4073845, February (1978).Google Scholar
  72. 72.
    M. Mori, H. Inoue andT. Ochiai, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) pp. 149.Google Scholar
  73. 73.
    T. Yamate, T. Kawahito andT. Iwai, in Proceedings of the International Symposium on Ceramic Components for Engines, edited by S. Somiya, E. Kanai and K. Ando (KTK Scientific, Tokyo, 1983) p. 333.Google Scholar
  74. 74.
    P. R. Miller, J. G. Lee andI. B. Cutler,J. Am. Ceram. Soc. 62 (1979) 147.Google Scholar
  75. 75.
    C. D. Greskovich andC. O'Clair,Am. Ceram. Soc. Bull. 57 (1978) 1055.Google Scholar
  76. 76.
    W. Engel,Powder Met. Int. 10 (1978) 124.Google Scholar
  77. 77.
    A. G. Evans, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) pp. 595–625.Google Scholar
  78. 78.
    D. Munz, O. Rosenfelder, K. Goebbels andH. Reiter, in “Keramische Komponenten für FahrzeugGasturbinen”, Vol. 111, edited by W. Bunk, M. Böhmer and H. Kissler (Springer-Verlag, Berlin, 1984) pp. 513–35.Google Scholar
  79. 79.
    G. Wotting, R. Peitzsch andH. Hausner,Sci. Sintering 17 (1985) 87.Google Scholar
  80. 80.
    G. Wötting andG. Ziegler,Powder Met. Int. 18 (1986) 35.Google Scholar
  81. 81.
    I. C. Huseby andG. Petzow,ibid. 6 (1974) 17.Google Scholar
  82. 82.
    H. Hausner,Sci. Ceram. 12 (1983) 229.Google Scholar
  83. 83.
    K. S. Mazdiyasni andC. M. Cooke,J. Am. Ceram. Soc. 57 (1974) 536.Google Scholar
  84. 84.
    R. Peitzsch andH. Hausner, in Proceedings of the International Symposium on Ceramic Components for Engines, edited by S. Somiya, E. Kanai and K. Ando (KTK Scientific, Tokyo, 1983) p. 208.Google Scholar
  85. 85.
    J. Briggs,Mater. Res. Bull. 12 (1977) 1047.Google Scholar
  86. 86.
    C. L. Quackenbush, J. T. Smith, J. T. Neil and K. W. French, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) p. 669.Google Scholar
  87. 87.
    L. J. Bowen, T. G. Carruthers andR. J. Brook,J. Am. Ceram. Soc. 61 (1978) 335.Google Scholar
  88. 88.
    G. E. Gazza, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) p. 273.Google Scholar
  89. 89.
    P. F. D. Morgan, F. F. Lange, D. R. Clarke andB. I. Davis,J. Am. Ceram. Soc. 64 (1981) C77.Google Scholar
  90. 90.
    J. Dodsworth andD. P. Thompson,Sci. Ceram. 11 (1981) 51.Google Scholar
  91. 91.
    I. J. McColm,JEMMSE, to be published.Google Scholar
  92. 92.
    G. Petzow andP. Greil, in Proceedings of the International Symposium on Ceramic Components for Engines, edited by S. Somiya, E. Kanai and K. Ando (KTK Scientific, Tokyo, 1983) p. 177.Google Scholar
  93. 93.
    G. Wötting andG. Ziegler,Fortschrittsber. DKG 1 (1985) 33.Google Scholar
  94. 94.
    Idem, in Proceedings of the International Symposium on Ceramic Components for Engines, edited by S. Somiya, E. Kanai and K. Ando (KTK Scientific, Tokyo, 1983) p. 412.Google Scholar
  95. 95.
    B. Kanka, G. Wötting andG. Ziegler, in preparation.Google Scholar
  96. 96.
    C. D. Greskovich andJ. A. Palm, Development of High Performance Sintered Si3NP4; Report No. AMMRC TR 80–46, September (1980).Google Scholar
  97. 97.
    G. Wötting andG. Ziegler,Fortschritisber. DKG (1986) to be published.Google Scholar
  98. 98.
    P. L. Antona, A. Giachello andP. C. Martinengo, in “Ceramic Powders”, Proceedings 5th CIMTEC, edited by P. Vincenzini (Elsevier, Amsterdam, 1983) pp. 753–66.Google Scholar
  99. 99.
    R. Pompe, L. Hermansson andR. Carlson,Sprechsaal 115 (1982) 1098.Google Scholar
  100. 100.
    J. A. Mangels, “Sintered Reaction-Bonded Si3N4 for the AGT 101 Turbine Rotor”; Report prepared for NASA-Lewis, Contract No. DEN 3-167, November (1980).Google Scholar
  101. 101.
    H. J. Kleebe, G. Wötting andG. Ziegler, in Proceedings 6th CIMTEC, to be published.Google Scholar
  102. 102.
    J. Heinrich andM. Böhmer,Powder Met. Int. 16 (1984) 233.Google Scholar
  103. 103.
    Idem, ibid 16 (1984) 283.Google Scholar
  104. 104.
    G. K. Watson, T. J. Moore andM. L. Millard,J. Am. Ceram. Soc. 67 (1984) C208.Google Scholar
  105. 105.
    J. Heinrich, N. Henn andM. Böhmer,Mater. Sci. Eng. 71 (1985) 131.Google Scholar
  106. 106.
    K. Homma, T. Tatsund, H. Okada andH. Takada,Zairyo 31 (1982) 960.Google Scholar
  107. 107.
    G. Ziegler,Z. Werkstofftech. 16 (1985) 44.Google Scholar
  108. 108.
    A. Tsuge andK. Nishida,Am. Ceram. Soc. Bull. 57 (1978) 424.Google Scholar
  109. 109.
    Idem, ibid. 57 (1978) 431.Google Scholar
  110. 110.
    G. Himsolt, H. Knoch, H. Hübner andF. W. Kleinlein,J. Am. Ceram. Soc. 62 (1979) 29.Google Scholar
  111. 111.
    J. Heinrich andM. Böhmer,Ber. Dtsch. Keram. Ges. 61 (1984) 399.Google Scholar
  112. 112.
    F. Thümmler andG. Grathwohl, “Creep of Ceramic Materials for Gas Turbine Applications” AGARD Rep. no. 651 (1976).Google Scholar
  113. 113.
    S. Ud Din andP. S. Nicholson,J. Mater. Sci. 10 (1975) 1375.Google Scholar
  114. 114.
    J. M. Birch andB. Wilshire,ibid. 13 (1978) 2627.Google Scholar
  115. 115.
    P. J. Dixon-Stubbs andB. Wilshire,ibid. 14 (1979) 2773.Google Scholar
  116. 116.
    R. A. L. Drew, S. Hampshire andK. H. Jack,Special Ceram. 7 (1981) 119.Google Scholar
  117. 117.
    S. C. Singhal,J. Mater. Sci. 11 (1976) 500.Google Scholar
  118. 118.
    D. Cubicciotti, K. H. Lau andR. L. Jones,J. Electrochem. Soc. 124 (1977) 1955.Google Scholar
  119. 119.
    G. N. Babini, A. Bellosi andP. Vincenzini,Sci. Ceram. 11 (1981) 291.Google Scholar
  120. 120.
    M. H. Lewis andP. Barnard,J. Mater. Sci 15 (1980) 443.Google Scholar
  121. 121.
    D. R. Clarke, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) pp. 421–6.Google Scholar
  122. 122.
    P. Vincenzini andA. Babini, in “Sintered Metal Ceramic Composites”, edited by G. S. Upadhyaya (Elsevier, Amsterdam, 1984) p. 425.Google Scholar
  123. 123.
    R. N. Katz andG. E. Gazza, in “Nitrogen Ceramics ”, edited by F. L. Riley (Noordhoff Leyden, 1977) pp. 417–31.Google Scholar
  124. 124.
    J. F. Weston, P. L. Pratt andB. C. H. Steele,J. Mater. Sci. 13 (1978) 2137.Google Scholar
  125. 125.
    P. Greil, J. C. Bressiani andG. Petzow, in Proceedings of the International Symposium on Ceramic Components, edited by S. Somiya, E. Kanai and K. Ando (KTK Scientific, Tokyo, 1983) pp. 228–35.Google Scholar
  126. 126.
    R. J. Lumby,Ceram. Eng. Sci. Proc. 3 (1982) 50.Google Scholar
  127. 127.
    E. Butler, R. J. Lumby andA. Szweda, in Proceedings of the International Symposium on Ceramic Components, edited by S. Somiya, E. Kanai and K. Ando (KTK Scientific, Toyko, 1983) p. 159.Google Scholar
  128. 128.
    G. Ziegler, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus-Nijhoff, 1983) p. 565.Google Scholar
  129. 129.
    G. Ziegler, K. Bentsen andD. P. H. Hasselman,J. Am. Ceram. Soc. 64 (1981) C35.Google Scholar
  130. 130.
    G. Ziegler andD. P. H. Hasselman,J. Mater. Sci. 61 (1981) 495.Google Scholar
  131. 131.
    G. Ziegler,Z. Werkstofftech. 16 (1985) 12.Google Scholar
  132. 132.
    Idem 16 (1985) 81.Google Scholar
  133. 133.
    G. Ziegler andD. P. H. Hasselman,Ceramurg. Int. 5 (1979) 126.Google Scholar
  134. 134.
    G. Ziegler andH. Knoch,Special Ceram. 7 (1981) 145.Google Scholar
  135. 135.
    G. Ziegler, in Proceedings of the International Symposium on Ceramic Components for Engines, edited by S. Somiya, E. Kanai and K. Ando (KTK Scientific, Tokyo, 1983) pp. 236–248.Google Scholar
  136. 136.
    G. Ziegler,Ber. Dt. Keram. Ges. 55 (1978) 397.Google Scholar
  137. 137.
    D. R. Messier andP. Wong,J. Am. Ceram. Soc. 56 (1973) 480.Google Scholar
  138. 138.
    H. M. Jennings andM. H. Richman,J. Mater. Sci. 11 (1976) 2087.Google Scholar
  139. 139.
    A. Atkinson, A. J. Moulson andE. W. Roberts,J. Am. Ceram. Soc. 59 (1976) 285.Google Scholar
  140. 140.
    A. Atkinson, P. J. Leatt, A. J. Moulson andE. W. Roberts,J. Mater. Sci. 9 (1974) 981.Google Scholar
  141. 141.
    D. Campos-Loritz andF. L. Riley,Sci. Ceram. 9 (1977) 38.Google Scholar
  142. 142.
    P. Longland andA. J. Moulson,J. Mater. Sci. 13 (1978) 2279.Google Scholar
  143. 143.
    M. W. Lindley, D. P. Elias, B. F. Jones andK. C. Pitman,ibid. 14 (1979) 70.Google Scholar
  144. 144.
    A. G. Evans andJ. V. Sharp, in “Electron Microscopy and Structure of Materials”, edited by G. Thomas, R. M. Fulrath and R. M. Fisher (University of California Press, 1972) pp. 1141–54.Google Scholar
  145. 145.
    S. C. Danforth andM. H. Richman,Metallogr. 9 (1976) 321.Google Scholar
  146. 146.
    M. Mitomo,J. Mater. Sci. 12 (1977) 273.Google Scholar
  147. 147.
    W. M. Dawson, P. Arundale andA. J. Moulson,Sci. Ceram. 9 (1977) 111.Google Scholar
  148. 148.
    J. Heinrich andG. Streb,J. Mater. Sci. 14 (1979) 2083.Google Scholar
  149. 149.
    J. Heinrich, Thesis, TU Berlin (1979).Google Scholar
  150. 150.
    J. Heinrich,Ber. Dt. Keram. Ges. 55 (1978) 238.Google Scholar
  151. 151.
    B. F. Jones andM. W. Lindley,Powder Met. Int. 8 (1976) 32.Google Scholar
  152. 152.
    J. Heinrich andH. Hausner, in “Energy and Ceramics”, Proceedings of the 4th International Meeting on Modern Ceramics Technologies, edited by P. Vincenzini, (Elsevier, Amsterdam, Oxford, New York, 1980) pp. 780–92.Google Scholar
  153. 153.
    H. J. Kleebe andG. Ziegler,Sci. Ceram. 13 (1985) 97.Google Scholar
  154. 154.
    S. M. Boyer andA. J. Moulson,J. Mater. Sci. 13 (1978) 1637.Google Scholar
  155. 155.
    R. B. Guthrie andF. L. Riley,ibid. 9 (1974) 1363.Google Scholar
  156. 156.
    D. J. Godfrey, Proc. Brit. Ceram. Soc.25 (1975) 325.Google Scholar
  157. 157.
    A. Marcks, Thesis, TU Berlin (1980).Google Scholar
  158. 158.
    J. A. Mangels,Am. Ceram. Soc. Bull. 60 (1981) 613.Google Scholar
  159. 159.
    R. W. Davidge andA. G. Evans,Mat. Sci. Eng. 6 (1970) 381.Google Scholar
  160. 160.
    A. G. Evans, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt et al. (Plenum, New York, 1974) p. 17.Google Scholar
  161. 161.
    B. J. Dalgleish andP. L. Pratt,Proc. Brit. Ceram. Soc. 25 (1975) 295.Google Scholar
  162. 162.
    A. G. Evans andR. W. Davidge,J. Mater. Sci. 5 (1970) 314.Google Scholar
  163. 163.
    J. Heinrich andD. Munz,Am. Ceram. Soc. Bull. 59 (1980) 1221.Google Scholar
  164. 164.
    R. W. Rice,J. Mater. Sci. 12 (1977) 627.Google Scholar
  165. 165.
    R. W. Davidge, in “Nitrogen Ceramics”, edited by F. L. Riley (Noordhoff-Leyden, 1977) pp. 541–59.Google Scholar
  166. 166.
    J. Heinrich andW. Bunk,Interceram. 5 (1981) 489.Google Scholar
  167. 167.
    F. Porz, “Reaktionsgesintertes Siliciumnitrid: Charakterisierung, Oxidation und mechanische Eigenschaften” (KFK, Bericht 3375, 1982).Google Scholar
  168. 168.
    G. Grathwohl andF. Thümmler,J. Mater. Sci. 13 (1978) 1177.Google Scholar
  169. 169.
    F. Thümmler, G. Grathwohl andF. Porz, in “Keramische Komponenten für Fahrzeug-Gasturbinen”, Vol. III, edited by W. Bunk, M. Böhmer and H. Kissler (Springer-Verlag, Berlin, 1984) pp. 449–85.Google Scholar
  170. 170.
    G. Ziegler,Sci. Ceram. 11 (1981) 503.Google Scholar
  171. 171.
    F. Porz, G. Grathwohl andF. Thümmler,Proc. Brit. Ceram. Soc. 31 (1981) 157.Google Scholar
  172. 172.
    J. V. Sharp,J. Mater. Sci. 8 (1973) 1755.Google Scholar
  173. 173.
    J. E. Siebels, in “Ceramics for High-Performance Applications”, Vol. III, edited by E. M. Lenoe, R. N. Katz and J. J. Burke (Plenum, New York, 1979) p. 793.Google Scholar
  174. 174.
    J. M. Birch andB. Wilshire,J. Mater. Sci. 13 (1978) 2627.Google Scholar
  175. 175.
    G. Grathwohl andF. Thümmler,Ceramurg. Int. 6 (1980) 43.Google Scholar
  176. 176.
    J. Heinrich, D. Munz andG. Ziegler,Powder Met. Int. 14 (1982) 153.Google Scholar
  177. 177.
    D. Brucklacher andW. Dienst,J. Nucl. Mater. 42 (1972) 285.Google Scholar
  178. 178.
    G. Ziegler andR. Ziegler,Special Ceram. 7 (1981) 133.Google Scholar
  179. 179.
    Idem, Microstruct. Sci. 9 (1981) 92.Google Scholar
  180. 180.
    G. Ziegler andJ. Heinrich,Ceramurg. Int. 6 (1980) 25.Google Scholar
  181. 181.
    G. Ziegler, in “Engineering with Ceramics”, edited by R. W. Davidge (British Ceramic Society, Shelton, Stoke-on-Trent, 1982) pp. 213–25.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • G. Ziegler
    • 1
  • J. Heinrich
    • 1
  • G. Wötting
    • 1
  1. 1.Deutsche Forschungs- und Versuchsanstalt für Luft- und RaumfahrtInstitut für Werkstoff-ForschungKöln 90FRG

Personalised recommendations