Advertisement

Journal of Materials Science

, Volume 22, Issue 2, pp 617–624 | Cite as

Relaxation behaviour of the amorphous components of wood

  • Stephen S. Kelley
  • Timothy G. Rials
  • Wolfgang G. Glasser
Papers

Abstract

The viscoelastic properties of mod were investigated using dynamic mechanical thermal analysis and differential scanning calorimetry. Under a limited set of conditions, two separate glass transitions (T g) could be identified with both techniques. These two transitions were identified as arising from the amorphous lignin and hernicellulose matrix in the wood cell wall. Moisture dramatically affected the temperature at which the two dispersions occurred and, consequently, the ability to resolve their independent responses. The relationship betweenT g and moisture for both components could be modelled with the Kwei equation, which accounts for the presence of secondary interactions. Annealing and specific interactions of a series of organic diluents were wed in an attempt to enhance the resolution of the two components values ofT g. Time-temperature superposition was shown to be applicable to wood plasticized with ethyl formamide, following Williams-Landel-Ferry behaviour over the temperature rangeT g toT g + 85° C. These observations allow certain conclusions to be drawn concerning the applicability of existing models of the wood cell wall's supermolecular morphology. Most notably, models of thein situ morphology of the three wood components can be limited to those which consider the amorphous matrix of lignin and hemicellulose to be immiscible.

Keywords

Lignin Differential Scanning Calorimetry Hemicellulose Wood Cell Wall Wood Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schniewind,Wood Sci. Tech.2 (1968) 188.Google Scholar
  2. 2.
    J. Bodig andB. A. Jayne, “Mechanics of Wood and Wood Composites” (Van Nostrand Reinhold, New York, 1982) Chs 5 and 6.Google Scholar
  3. 3.
    M. Mori, M. Norimoto andT. Yamada,Wood Res.56 (1974) 33.Google Scholar
  4. 4.
    W. E. Hillis andA. N. Rozsa,Holzforschung32(2) (1978) 68.CrossRefGoogle Scholar
  5. 5.
    W. J. Cousins,Wood Sci. Tech.10 (1976) 9.CrossRefGoogle Scholar
  6. 6.
    Idem, ibid.12 (1978) 161.CrossRefGoogle Scholar
  7. 7.
    G. M. Irvine,TAPPI67(5) (1984) 118.Google Scholar
  8. 8.
    T. Hatakeyama, S. Hirose andH. Hatakeyama,Makromol. Chem.184 (1983) 1265.CrossRefGoogle Scholar
  9. 9.
    D. A. I. Goring,Pulp Paper Mag. Can.64 (1963) t517.Google Scholar
  10. 10.
    R. A. Young,Wood Sci.11(2) (1978) 97.Google Scholar
  11. 11.
    N. L. Salmen andE. L. Back,TAPPT60(12) (1977) 137.Google Scholar
  12. 12.
    N. L. Salmen,J. Mater. Sci.19 (1984) 3090.CrossRefADSGoogle Scholar
  13. 13.
    C. A. Wert, M. Weller andD. Caulfield,J. Appl. Phys.56 (1984) 2453.CrossRefADSGoogle Scholar
  14. 14.
    T. Sadoh,Wood Sci. Tech.15 (1981) 67.CrossRefGoogle Scholar
  15. 15.
    E. L. Back andN. L. Salmen,TAPPT65(7) (1982) 107.Google Scholar
  16. 16.
    L. Salmen, E. Back andY. Alwarsdotter,J. Wood Chem. Tech.4(3) (1984) 347.CrossRefGoogle Scholar
  17. 17.
    R. F. Eaton, T. H. Tran, M. Shen, T. F. Schatzki andE. Menefee,Polym. Prepr.17(2) (1976) 54.Google Scholar
  18. 18.
    T. K. Kwei,J. Polym. Sci.: Polym. Lett.22 (1984) 307.CrossRefGoogle Scholar
  19. 19.
    I. M. Ward, “Mechanical Properties of Solid Polymers”, 2nd Edn (Wiley-Interscience, New York, 1983) Chs 5 to 8.Google Scholar
  20. 20.
    E. A. Turi, “Thermal Characterization of Polymeric Materials” (Academic Press, New York, 1981) Chs 2 and 4.Google Scholar
  21. 21.
    J. Gravitis andP. Erins,J. Appl. Polym. Sci.: Appl. Polym. Symp.37 (1983) 421.Google Scholar
  22. 22.
    P. Erins, V. Cinite, M. Jakobsons andJ. Gravitis,ibid.28 (1976) 1117.Google Scholar
  23. 23.
    T. G. Rials andW. G. Glasser,J. Wood Chem. Tech.4(3) (1984) 331.CrossRefGoogle Scholar
  24. 24.
    J. Halpin, in “Composite Materials Workshop”, edited by S. W. Tsai, J. C. Halpin and N. J. Pagano (Technomic Publishing Co., Stamford, Connecticut, 1967) p. 87.Google Scholar
  25. 25.
    A. R. Schultz andA. L. Young,Macromolecules13 (1980) 663.CrossRefADSGoogle Scholar
  26. 26.
    C. Skaar, “Water in Wood” (Syracuse University Press, Syracuse, 1972) p. 57.Google Scholar
  27. 27.
    E. L. Schaffer, in “General Constitutive Relations for Wood and Wood-Based Materials” (Syracuse University Press, Syracuse, 1980) p. 254.Google Scholar
  28. 28.
    A. Rudin, “The Elements of Polymer Science and Engineering” (Academic Press, New York, 1982) p. 433.Google Scholar
  29. 29.
    H. Burrell, in “Polymer Handbook”, 2nd Edn, edited by J. Bandrup and E. H. Immergut (Wiley-Interscience, New York, 1975) p. IV-337.Google Scholar
  30. 30.
    W. J. MacKnight, R. E. Karasz andJ. R. Fried, in “Polymer Blends”, Vol. 1, edited by D. R. Paul and S. Newman (Academic Press, New York, 1978) p. 224.Google Scholar
  31. 31.
    M. L. Williams, R. F. Landel andJ. D. Ferry,J. Amer. Chem. Soc.77 (1955) 3701.CrossRefGoogle Scholar
  32. 32.
    J. J. Aklonis andW. J. MacKnight, “Introduction to Polymer Viscoelasticity”, 2nd Edn (Wiley-Interscience, New York, 1983) Ch. 3.Google Scholar
  33. 33.
    B. L. Lenz,TAPPI51 (1968) 511.Google Scholar
  34. 34.
    H. Ishikawa andT. Nakajima,J. Jpn. Forestry Soc.36 (1954) 104.Google Scholar
  35. 35.
    W. Brown,J. Appl. Polym. Sci.II (1967) 2381.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Stephen S. Kelley
    • 1
  • Timothy G. Rials
    • 1
  • Wolfgang G. Glasser
    • 1
  1. 1.Department of Forest Products, and Polymer Materials and Interfaces LaboratoryTech VirginiaBlacksburgUSA

Personalised recommendations