Mathematische Zeitschrift

, Volume 201, Issue 2, pp 167–176 | Cite as

On limits of quasi-conformal deformations of Kleinian groups

  • Ken'ichi Ohshika


Kleinian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abikoff, W.: On the boundaries of Teichmüller spaces and on Kleinian groups III. Acta Math.134, 211–237 (1975)Google Scholar
  2. 2.
    Ahlfors, L.: Finitely generated Kleinian groups. Am. J. Math.86, 413–423 (1964)Google Scholar
  3. 3.
    Bers, L.: On the boundaries of Teichmüller spaces and on Kleinian groups I. Ann. Math.91, 570–600 (1970)Google Scholar
  4. 4.
    Bers, L.: Spaces of Kleinian groups. Lect. Notes Math.155, 9–34 (1970)Google Scholar
  5. 5.
    Bonahon, F.: Bouts des variétés hyperboliques de dimension 3. Ann Math.124, 71–158 (1986)Google Scholar
  6. 6.
    Casson, A.: Automorphisms of surfaces after Nielsen and Thurston. Lect. Notes Univ. Texas (1983)Google Scholar
  7. 7.
    Culler, M., Shalen, P.: Varieties of groups representations and splittings of 3-manifolds. Ann. Math.117, 109–146 (1983)Google Scholar
  8. 8.
    Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces. Astérisque66–67 (1979)Google Scholar
  9. 9.
    Harer, J., Penner, R.: Combinatorics of train tracks. PreprintGoogle Scholar
  10. 10.
    Jaco, W., Shalen, P.: Seifert fibered spaces in 3-manifolds. Mem. of A.M.S.22220 (1979)Google Scholar
  11. 11.
    Johannson, K.: Homotopy equivalence of 3-manifolds with boundary. Lect. Notes Math.761. Berlin Heidelberg New York: Springer 1979Google Scholar
  12. 12.
    Jørgensen, T.: On discrete groups of Möbius transformations. Am. J. Math.98, 739–749 (1976)Google Scholar
  13. 13.
    Kerckhoff, S.: The Nielsen realization problem. Ann. Math.117, 235–265 (1983)Google Scholar
  14. 14.
    Kerckhoff, S.: Earthquakes are analytic. Comment. Math. Helv.60, 17–30 (1985)Google Scholar
  15. 15.
    Morgan, J.: On Thurston's uniformization theorem for three-dimensional manifolds. The Smith conjecture. New York London. Academic PressGoogle Scholar
  16. 16.
    Morgan, J., Shalen, P.: Valuations trees and degenerations of hyperbolic structures I. Ann. Math.120, 401–476 (1984)Google Scholar
  17. 17.
    Morgan, J., Shalen, P.: Degeneration of hyperbolic structures II, measured laminations in 3-manifolds. Ann. Math.127, 403–456 (1988)Google Scholar
  18. 18.
    Morgan, J., Shalen, P.: Degeneration of hyperbolic structure III, actions of 3-manifold groups on trees and Thurston's compactness theorem. Ann. Math.127 (1988)Google Scholar
  19. 19.
    Marden, A.: The geometry of finite generated Kleinian group. Ann. Math.99, 383–462 (1974)Google Scholar
  20. 20.
    Rees, M.: An alternative approach to the ergodic theory of measured foliations on surfaces. Ergod. Theory Dyn. Syst.1, 461–488 (1981)Google Scholar
  21. 21.
    Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyberbolic motion. Ann. Math. Study97, 465–496 (1981)Google Scholar
  22. 22.
    Thurston, W.: The geometry and topology of 3-manifolds. Lecture notes Princeton Univ. (1978)Google Scholar
  23. 23.
    Thurston, W.: Hyperbolic structures on 3-manifolds I: Deformation of acylindrical manifolds. Ann. Math.124, 203–246 (1986)Google Scholar
  24. 24.
    Thurston, W.: Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle. PreprintGoogle Scholar
  25. 25.
    Thurston, W.: Hyperbolic structures on 3-manifolds III; Deformations of hyperbolic 3-manifolds with incompressible boundary. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Ken'ichi Ohshika
    • 1
  1. 1.Department of MathematicsTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations