Advertisement

Journal of Materials Science

, Volume 22, Issue 1, pp 159–169 | Cite as

An investigation of the synthesis of nickel aluminides through gasless combustion

  • K. A. Philpot
  • Z. A. Munir
  • J. B. Holt
Papers

Abstract

The formation of nickel aluminidms by the thermal explosion mode of gasless combustion synthesis was investigated for Ni-Al powders ranging in composition from 5 to 3O at% Al. Compound formation was found to take place sequentially starting with the most aluminium-rich and ending with AlNi3 as the predominant compound in the product. Compounds formed through both solid- and liquid-sate reactions, with the relative contribution of each depending on the rate of heating of the powders to the reaction temperature. The effect of the particle size of nickel on these reactions vvasalso investigated for powders with average diameters from 14 to 58μm.

Keywords

Polymer Particle Size Combustion Nickel Reaction Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Booth,Trans. Faraday Soc. 49 (1953) 272.Google Scholar
  2. 2.
    A. G. Merzhanov,Archiv. Combust. 1 (1981) 23.Google Scholar
  3. 3.
    I. P. Borovinskaya, G. A. Vishniakova, V. M. Maslov andA. G. Merzhanov, in “Combustion Processes in Chemical Technology and Metallurgy” (Moscow, 1975) p. 141.Google Scholar
  4. 4.
    Y. S. Naiborodenko, V. I. Itin andK. V. Savitskii,Sov. Phys. J. 11 (1968) 19.Google Scholar
  5. 5.
    Idem, ibid. 11 (1968) 89.Google Scholar
  6. 6.
    Y. S. Naiborodenko, V. I. Itin, A. G. Merzhanov, I. P. Borovinskaya, V. P. Ushakov andV. P. Maslov,ibid. 16 (1973) 872.Google Scholar
  7. 7.
    Y. S. Naiborodenko, V. I. Itin, B. P. Belozerov andV. P. Ushakov,ibid. 16 (1973) 1507.Google Scholar
  8. 8.
    Y. S. Naiborodenko andV. I. Itin,Comb. Explos. Shock Wave 11 (1975) 293.Google Scholar
  9. 9.
    Idem, ibid. 11 (1975) 626.Google Scholar
  10. 10.
    V. M. Maslov, I. P. Borovinskaya andA. G. Morzhanov,ibid. 12 (1976) 631.Google Scholar
  11. 11.
    Y. S. Naiborodenko, V. I. Itin andK. V. Savitskii,Sov. Powd. Metall. Ceram. No. 7(91) (1970) 562.Google Scholar
  12. 12.
    V. I. Iyin, A. D. Bratchikov andL. N. Postnikova,ibid. No. 5(209) (1980) 315.Google Scholar
  13. 13.
    V. I. Itin, A. D. Bratchikov andA. V. Lepinskikh,Comb. Explos. Shock Wave 17 (1981) 506.Google Scholar
  14. 14.
    V. M. Maslov, I. P. Borovinskaya andM. K. Ziatdinov,ibid. 15 (1979) 41.Google Scholar
  15. 15.
    M. R. Birnbaum, Sandia Laboratories (Livermore, California) Report No. SAND 78-8503 (1978).Google Scholar
  16. 16.
    E. A. Nekrasov, Y. M. Maksimov andA. P. Aldushin,Comb. Explos. Shock Wave 17 (1981) 140.Google Scholar
  17. 17.
    J. B. Holt andZ. A. Munir,J. Mater. Sci. 21 (1986) 251.Google Scholar
  18. 18.
    R. Hultgren, “Selected Values of Thermodynamic Properties of Metals and Alloys” (American Society for Metals, Metal Park, Ohio, 1973) p. 191.Google Scholar
  19. 19.
    M. Hansen, “Constitution of Binary Alloys”, 2nd Edn (McGraw-Hill, New York, 1958) p. 118.Google Scholar
  20. 20.
    M. M. Janssen andG. D. Rieck,Trans. Met. Soc. AIME 239 (1967) 1372.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • K. A. Philpot
    • 1
  • Z. A. Munir
    • 1
  • J. B. Holt
    • 2
  1. 1.Division of Materials Science and EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Department of Chemistry and Materials ScienceLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations