Advertisement

Journal of Materials Science

, Volume 22, Issue 1, pp 1–16 | Cite as

The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites

  • F. Delannay
  • L. Froyen
  • A. Deruyttere
Review

Abstract

This review aims at making a bridge between the fundamentals of the wetting of solids by liquid metals and the practice of the preparation of metal-matrix composites. One recalls first the significance of concepts such as surface tension, work of adhesion, adsorption and the relation between these concepts, the phenomenon of wetting and the process of liquid metal infiltration. Thereafter, the wetting of various types of solids is considered: metals, oxides, carbon and carbides. !n the !light of this body of science, one proposes finally a critical evaluation of the literature concerning the preparation of metal-matrix composites by liquid metal infiltration techniques. Particular emphasis is devoted to reinforcements made of graphite, alumina or silicon carbide multifilament fibres; the use of coatings and the addition of alloying elements to the metal are successively discussed.

Keywords

Oxide Polymer Alumina Silicon Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. C. Kreider, (ed.), “Metallic Matrix Composites” (Academic Press, New York, 1974).Google Scholar
  2. 2.
    J. C. Viala andJ. Bouix,Mater. Chem. Phys. 11 (1984) 101.Google Scholar
  3. 3.
    A. G. Metcalfe, in “Metallic Matrix Composites”, edited by K. C. Kreider (Academic Press, New York, 1974) p. 269.Google Scholar
  4. 4.
    R. L. Mehan andM. N. Noone,ibid.in “ p. 159.Google Scholar
  5. 5.
    R. A. Signorelli,ibid.in “ p. 230.Google Scholar
  6. 6.
    R. L. Mehan andR. B. Bolon,J. Mater. Sci. 14 (1979) 2471.Google Scholar
  7. 7.
    K. C. Kreider andK. M. Prewo, in “Metallic Matrix Composites”, edited by K. C. Kreider (Academic Press, New York, 1974) p. 400.Google Scholar
  8. 8.
    E. G. Kendall,ibid.in “ p. 319.Google Scholar
  9. 9.
    R. Lignon,Rech. Aerospat. 1 (1974) 49.Google Scholar
  10. 10.
    A. K. Dhingra,Phil. Trans. R. Soc. A294 (1980) 151.Google Scholar
  11. 11.
    T. W. Clyne, M. G. Bader, G. R. Cappleman andP. A. Hubert,J. Mater. Sci. 20 (1985) 85.Google Scholar
  12. 12.
    S. Yajima, J. Tanaka, K. Okamura, H. Ichikawa andT. Hayase,Rev. Chim. Miner. 18 (1981) 412.Google Scholar
  13. 13.
    D. Webster, in Proceedings of 3rd International Conference on Composites, Paris, 1980, Vol. 2, (Pergamon Press, London, 1980) p. 1165.Google Scholar
  14. 14.
    A. P. Divecha, S. G. Fishman andS. D. Karmarkar,J. Metals 9 (1981) 12.Google Scholar
  15. 15.
    T. W. Chou, A. Kelly andA. Okura,Composites 16 (1985) 187.Google Scholar
  16. 16.
    E. Fitzer andG. Jacobsen, in “Progress in Science and Engineering of Composites”, ICCM-IV, edited by T. Hayashi, K. Kawata and S. Umekawa, (Japanese Society for Composite Materials, Tokyo, 1982) p. 1315.Google Scholar
  17. 17.
    M. F. Amateau,J. Compos. Mater. 10 (1976) 279.Google Scholar
  18. 18.
    E. Nakata, Y. Kagawa andH. Terao,Rep. Casting Res. Lab, Waseda Univ. 34 (1983) 27.Google Scholar
  19. 19.
    E. A. Banerji, P. K. Rohatgi andW. Reif,Metall. 38 (1984) 656.Google Scholar
  20. 20.
    R. Defay, I. Prigogine, A. Bellemans andD. H. Everett, “Surface Tension and Adsorption” (Longmans, London, 1966).Google Scholar
  21. 21.
    N. Eustathopoulos andJ. C. Joud, in “Current Topics in Materials Science”, Vol. 4, edited by E. Kaldis (North-Holland, Amsterdam, 1980) p. 281.Google Scholar
  22. 22.
    G. Ibe, in “Haftung als Basis fur Stoffverbunde and Verbundwerkstoffe”, edited by W. Brockmann (Deutsche Gesellschaft für Metallkunde, Oberursel, West Germany, 1983) p. 281.Google Scholar
  23. 23.
    A. Dupre, Theoric Mecanique de la chaleur (Gauthier Villars, Paris, 1869).Google Scholar
  24. 24.
    D. Pique, L. Coudurier andN. Eustathopoulos,Scripta Metall,15 (1981) 165.Google Scholar
  25. 25.
    G. R. Belton,Metall. Trans. 7b (1976) 35.Google Scholar
  26. 26.
    E. A. Guggenheim,Trans. Faraday Soc. 41 (1945) 150.Google Scholar
  27. 27.
    T. P. Hoar andD. A. Melford,ibid. 53 (1957) 315.Google Scholar
  28. 28.
    J. C. Joud, J. C. Mathieu, P. Desre andE. Bonnier,J. Chim. Phys. 69 (1972) 131.Google Scholar
  29. 29.
    N. Eustathopoulos, J. C. Jour andP. Desre,ibid. 69 (1972) 1599.Google Scholar
  30. 30.
    idem. andP. Desre,ibid. 71 (1974) 777.Google Scholar
  31. 31.
    N. Eustathopoulos,Int. Met. Rev. 28 (1983) 189.Google Scholar
  32. 32.
    I. A. Askay, C. E. Hoge andJ. A. Pask,J. Phys. Chem. 78 (1974) 1178.Google Scholar
  33. 33.
    J. V. Naidich,Prog. Surf. Membr. Sci. 14 (1981) 353.Google Scholar
  34. 34.
    T. Young,Phil. Trans. R. Soc. 95 (1805) 65.Google Scholar
  35. 35.
    J. W. Gibbs,J. Phys. Chem. 3 (1878) 343.Google Scholar
  36. 36.
    R. E. Johnson Jr,J. Phys. Chem. 63 (1959) 1655.Google Scholar
  37. 37.
    K. A. Semlak andF. N. Rhines,Trans. Met. Soc. AIME (June 1958) 325.Google Scholar
  38. 38.
    R. T. Beyer andE. M. Ring, in “Liquid Metals, Chemistry and Physics”, edited by S. Z. Beer (Dekker, New York, 1972) p. 431.Google Scholar
  39. 39.
    T. W. Clyne andM. G. Bader, in Proceedings of ICCM-V, edited by W. C. Harrigan, J. Strife and A. K. Dhingra (The Metallurgical Society, Warrendale, 1985) p. 755.Google Scholar
  40. 40.
    G. Girot, J. P. Rocher, J. M. Quenisset andR. Naslain, in Proceedings E-MRS Meeting, Fall 1985, in press.Google Scholar
  41. 41.
    B. C. Allen, in “Liquid Metals: Chemistry and physics”, edited by S. Z. Beer (Dekker, New York, 1972) p. 161.Google Scholar
  42. 42.
    L. Goumiri andJ. C. Joud,Acta Metall. 30 (1982) 1397.Google Scholar
  43. 43.
    A. Pamies, C. G. Cordovilla andE. Louis,Scripta Metall. 18 (1984) 869.Google Scholar
  44. 44.
    A. S. Skapski,J. Chem. Phys. 16 (1948) 389.Google Scholar
  45. 45.
    S. H. Overbury, P. A. Bertrand andG. A. Somorjai,Chem. Rev. 75 (1975) 547.Google Scholar
  46. 46.
    R. Evans,J. Physique 41 (c8) (1980) 775.Google Scholar
  47. 47.
    E. Chacon, F. Flores andG. Navascues,J. Phys., Met. Phys. 14 (1984) 1587.Google Scholar
  48. 48.
    N. Eustathopoulos, J. C. Joud andP. Desre,J. Chim. Phys. 70 (1973) 49.Google Scholar
  49. 49.
    W. R. Tyson andW. A. Miller,Surf. Sci. 62 (1977) 267.Google Scholar
  50. 50.
    R. H. Ewing,J. Cryst. Growth 11 (1971) 221.Google Scholar
  51. 51.
    G. L. Bailey andH. C. Watkins,J. Inst. Met. 80 (1951–52) 57.Google Scholar
  52. 52.
    R. J. Klein Wassink,ibid. 95 (1967) 38.Google Scholar
  53. 53.
    A. R. Miedema andF. J. A. den Broeder,Z. Metallkde. 70 (1979) 14.Google Scholar
  54. 54.
    O. Gomez-Moreno, L. Coudurier andN. Eustathopoulos,Acta Metall. 30 (1982) 831.Google Scholar
  55. 55.
    V. N. Eremenko andN. D. Lesnik, in “The Role of Surface Phenomena in Metallurgy”, edited by V. N. Eremenko (Consultants Bureau, New York, 1963) p. 102.Google Scholar
  56. 56.
    S. I. Popel, V. N. Kozhurkov andT. V. Zakharoya,Zaschschita Metallov (English translation)7 (1971) 421.Google Scholar
  57. 57.
    N. Eustathopoulos andD. Pique,Scripta Metall. 14 (1980) 1291.Google Scholar
  58. 58.
    R. Warren.J. Mater. Sci. 15 (1980) 2489.Google Scholar
  59. 59.
    F. M. Fowkes,Ind. Eng. Chem 56 (1964) 40.Google Scholar
  60. 60.
    J. E. McDonald andJ. G. Eberhart,Trans. Metall. Soc. AIME 233 (1965) 512.Google Scholar
  61. 61.
    A. M. Stoneham, AERE Report No. 964 (1982).Google Scholar
  62. 62.
    Idem, Appl. Surf. Sci. 14 (1982–83) 249.Google Scholar
  63. 63.
    R. G. Barrera andC. B. Duke,Phys. Rev. 13 (1976) 4477.Google Scholar
  64. 64.
    W. A. Weyl, in “Structure and Properties of Solid Surfaces”, edited by R. Gomer and C. S. Smith (University of Chicago Press, 1953) p. 147.Google Scholar
  65. 65.
    D. T. Livey andP. Murray, in Proceedings of 2nd Plansee seminar, Reutte/Tyrol, 1956 (Metallwerk Plansee, Reutte, 1956) p. 375.Google Scholar
  66. 66.
    N. Cabrera andN. Mott,Rep. Progr. Phys. 1 (1948–49) 163.Google Scholar
  67. 67.
    M. Humenik Jr andW. D. Kingery,J. Amer. Ceram. Soc. 37 (1954) 18.Google Scholar
  68. 68.
    B. C. Allen andW. D. Kingery,Trans. Metall. Soc. AIME 215 (1959) 30.Google Scholar
  69. 69.
    N. Eustathopoulos andA. Passerone, in Proceedings of 7th International Conference “Physicochimie et siderurgie” (Societé Française de Métallurgie, Paris, 1978) p. 61.Google Scholar
  70. 70.
    V. F. Ukov, O. A. Esin, N. A. Vatolin andE. L. Dubinin, in “Physicochimie des phenomenes de surface a haute temperature” (Akad. Nauk. USSR, “Naukova Dumka”, Kiev, 1971) p. 139.Google Scholar
  71. 71.
    K. Aratani andY. Tamai, in “Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems”, edited by J. Pask and A. Evans (Plenum Press, New York, 1981) p. 433.Google Scholar
  72. 72.
    G. A. Halden andW. D. Kingery,J. Phys. Chem. 59 (1956) 557.Google Scholar
  73. 73.
    S. P. Mehrotra andA. C. D. Chaklader,Metall. Trans. 16B (1985) 567.Google Scholar
  74. 74.
    R. L. Mehan,J. Compos. Mater. 4 (1970) 90.Google Scholar
  75. 75.
    B. F. Quigley, G. J. Abbaschian, R. Wunderlin andR. Mehrabian,Metall. Trans. 13A (1982) 93.Google Scholar
  76. 76.
    J. T. Klomp, in “Electronic Packaging Materials Science”, edited by E. A. Geiss, King-Nnig Tu and D. R. Uhlmann (Materials Research Society, Pittsburgh, 1985) p. 381.Google Scholar
  77. 77.
    O. Kubaschewski andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon, Oxford, 1979).Google Scholar
  78. 78.
    A. K. Niessen, F. R. de Boer, R. Boom, P. F. de Chatel, W. C. M. Mattens andA. R. Miedema,Calphad 7 (1983) 51.Google Scholar
  79. 79.
    L. Coudurier, J. Adorian, D. Pique andN. Eustathopoulos,Rev. Int. Hautes Temp. Refr. 21 (1984) 81.Google Scholar
  80. 80.
    D. Widdows andM. G. Nicholas, Report AERE-R5625, (UK Atomic Energy Authority, Harwell, 1967).Google Scholar
  81. 81.
    C. R. Manning andT. B. Gurganus,J. Amer. Ceram. Soc. 52 (1969) 115.Google Scholar
  82. 82.
    N. Eustathopoulos, J. C. Joud, P. Desre andJ. M. Hicter,J. Mater. Sci 9 (1974) 1233.Google Scholar
  83. 83.
    L. Froyen andA. Deruyttere, in Proceedings of 4th European Symposium on Materials Science and Microgravity, Madrid, ESA SP-191, edited by T. D. Guyenne and J. Hunt (Noordwijk, 1983) p. 31.Google Scholar
  84. 84.
    R. Warren andC. H. Andersson,Composites 15 (1984) 101.Google Scholar
  85. 85.
    W. Kohler,Aluminium 51 (1975) 443.Google Scholar
  86. 86.
    R. C. Rossi, R. T. Pepper, J. W. Upp andW. C. Riley,Ceram. Bull. 50 (1971) 484.Google Scholar
  87. 87.
    J. A. Cornie, R. J. Suplinskas andA. W. Hauze,Ceram. Eng. Sci. Proc. 1 (1980) 728.Google Scholar
  88. 88.
    K. Prapriputaloong andM. R. Piggot,J. Amer. Ceram. Soc. 56 (1973) 184.Google Scholar
  89. 89.
    R. T. Swann andD. M. Esterling,Composites 15 (1984) 305.Google Scholar
  90. 90.
    D. M. Goddard, Met. Progr. (April 1984) 49.Google Scholar
  91. 91.
    G. R. Cappleman, J. F. Watts andT. W. Clyne,J. Mater. Sci. 20 (1985) 2159.Google Scholar
  92. 92.
    L. Aggour, E. Fitzer, M. Heym andE. Ignatowitz,Thin Solid Films 40 (1977) 97.Google Scholar
  93. 93.
    F. A. Badia andP. K. Rohatgi,Trans. Amer. Foundrymen's Soc. 77 (1969) 402.Google Scholar
  94. 94.
    A. C. D. Chaklader andK. R. Linger,Composites 7 (1976) 239.Google Scholar
  95. 95.
    T. Ishikawa, J. Tanaka, H. Teranishi, T. Okamura andT. Hayase, US Patent US4440571 (1981).Google Scholar
  96. 96.
    R. Lignon, O.N.E.R.A., French Patent 2183371 (1972).Google Scholar
  97. 97.
    D. M. Goddard andR. W. Sexton, French Patent 2 494 260 (1982).Google Scholar
  98. 98.
    B. C. Pai andP. K. Rohatgi,Mater. Sci. Eng. 21 (1975) 161.Google Scholar
  99. 99.
    S. M. Savvateeva andP. Sebo, in Proceedings of International Symposium on Composite Materials, 1978, Paper No. 21.Google Scholar
  100. 100.
    D. M. Goddard,J. Mater. Sci. 13 (1978) 1841.Google Scholar
  101. 101.
    J. P. Rocher, J. M. Quenisset andR. Naslain,J. Mater. Sci. Lett. 4 (1985) 1527.Google Scholar
  102. 102.
    Mitsubishi Industries, Japanese Patent 5834148 (1983).Google Scholar
  103. 103.
    Idem, Japanese Patent 5 834 148 (1983).Google Scholar
  104. 104.
    G. Imich, US Patent 2 793 949 (1957).Google Scholar
  105. 105.
    B. C. Pai, S. Rai, K. V. Prabhakar andP. K. Rohatgi,Mater. Sci. Eng. 24 (1976) 31.Google Scholar
  106. 106.
    T. P.Murali, M. K.Surrappa andP. K. Rohatgi,Metall. Trans. 13B (1982) 485.Google Scholar
  107. 107.
    Y. Kimura, Y. Mishima, S. Umekawa andT. Suzuki,J. Mater. Sci. 19 (1984) 3107.Google Scholar
  108. 108.
    W. C. Harrigan, J. Strife andA. K. Dhingra (eds), Proceedings of 5th International Conference on Composite Materials, ICCM-V, San Diego, 1985, (The Metallurgical Society, Warrendale, 1985).Google Scholar
  109. 109.
    A. R. Bunsell, P. Lamicq and A. Massiah (eds), Proceedings of the 1st European Conference on Composite Materials, Bordeaux, 1985 (European Association for Composite Materials, 1985) p. 634.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • F. Delannay
    • 1
  • L. Froyen
    • 1
  • A. Deruyttere
    • 1
  1. 1.Departement Metaalkunde en Toegepaste MateriaalkundeKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations