Mathematische Zeitschrift

, Volume 190, Issue 2, pp 207–220

Uniform convergence of operators onL and similar spaces

  • Heinrich P. Lotz


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ando, T.: Convergent sequences of finitely additive measures. Pacific J. Math.11, 395–404 (1961)Google Scholar
  2. 2.
    Ando, T.: Invariante Masse positiver Kontraktionen aufC(X). Studia Math.31, 777–788 (1969)Google Scholar
  3. 3.
    Bourbaki, N.: Topologie Générale, chap. 1 et 2, 4e ed. Paris: Hermann 1965; chap. 9, 2e ed. Paris: Hermann 1958Google Scholar
  4. 4.
    Davies, E.B.: One-Parameter Semigroups. London-New York: Academic Press 1980Google Scholar
  5. 5.
    Dean, D.W.: Schauder decompositions in (m). Proc. Amer. Math. Soc.18, 619–623 (1967)Google Scholar
  6. 6.
    Dunford, N.: Spectral theory I, Convergence to projections. Trans. Amer. Math. Soc.54, 185–217 (1943)Google Scholar
  7. 7.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I: General Theory. New York: Wiley 1958Google Scholar
  8. 8.
    Grothendieck, A.: Sur les applications linéaires faiblement compactes d'espaces du typeC(K). Canad. J. Math.5, 129–173 (1953)Google Scholar
  9. 9.
    Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. Providence, R. I.: Amer. Math. Soc. 1957Google Scholar
  10. 10.
    Josefson, B.: Weak sequential convergence in the dual of a Banach space does not imply norm convergence. Ark. Mat.13, 79–89 (1975)Google Scholar
  11. 11.
    Kishimoto, A., Robinson, D.W.: Subordinate semigroups and order properties. J. Austral. Math. Soc. Ser. A31, 59–76 (1981)Google Scholar
  12. 12.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. Lecture Notes in Math.338. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  13. 13.
    Lotz, H.P.: Uniform ergodic theorems for Markov operators onC(X). Math. Z.178, 145–156 (1981)Google Scholar
  14. 14.
    Lotz, H.P.: Quasi-kompakte positive Kontraktionen aufC(X). Semesterbericht Funktionalanalysis, Tübingen, Wintersemester 1981/82, pp. 139–147Google Scholar
  15. 15.
    Lotz, H.P.: Tauberian theorems for operators onL and similar spaces. In: Functional Analysis, Surveys and Recent Results III. K.-D. Bierstedt and B. Fuchssteiner (eds.), 117–133. Amsterdam: Elsevier Science Publishers B.V. (North-Holland) 1984Google Scholar
  16. 16.
    Nissenzweig, A.:w * sequential convergence. Israel J. Math.22, 266–272 (1975)Google Scholar
  17. 17.
    Schaefer, H.H.: Topological Vector Spaces. New York-London: Macmillan 1966Google Scholar
  18. 18.
    Schaefer, H.H.: Banach Lattices and Positive Operators. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  19. 19.
    Seever, G.L.: Measures onF-spaces. Trans. Amer. Math. Soc.133, 267–280 (1968)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Heinrich P. Lotz
    • 1
  1. 1.Mathematisches Institut der UniversitätTübingen 1Germany

Personalised recommendations