Mathematische Zeitschrift

, Volume 199, Issue 1, pp 133–151 | Cite as

Finite group actions on homotopy complex projective spaces

  • Mark Hughes


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Atiyah, M.F.:K-Theory. New York: W.A. Benjamin, Inc. 1967Google Scholar
  2. [AS]
    Atiyah, M.F., Singer, I.M.: The Index of Elliptic Operators III. Ann. Math.87, 546–604 (1968)Google Scholar
  3. [B1]
    Bak, A.: The Involution on Whitehead Torsion. General Topology and its Applications7, 201–206 (1977)Google Scholar
  4. [B2]
    Bak, A.: The Computation of Surgery Groups of Finite Groups with 2-Hyperelementary Subgroups. Lecture Notes in Math. vol.551, pp. 384–409. Berlin Heidelberg New York: Springer 1976Google Scholar
  5. [D]
    Dovermann, K.H.: Almost Isovariant Normal Maps. Preprint 1986Google Scholar
  6. [DM]
    Dovermann, K.H., Masuda, M.: Preprint 1985Google Scholar
  7. [DMS]
    Dovermann, K.H., Masuda, M., Schultz, R.: Conjugation involutions on homotopy complex projective spaces. Jap. J. Math.12, 1–35 (1986)Google Scholar
  8. [DMSu]
    Dovermann, K.H., Masuda, M., Suh, D.Y.: Rigid Versus Non-Rigid Cyclic Actions. In preparationGoogle Scholar
  9. [DR]
    Dovermann, K.H., Rothenberg, M.: The Generalized Whitehead Torsion of aG-Homotopy Equivalence. Preprint 1986Google Scholar
  10. [Ha]
    Hattori, A.: Spinc Structures andS 1 Actions. Invent. Math.48, 7–31 (1978)Google Scholar
  11. [JS]
    James, I.M., Segal, G.B.: On Equivariant Homotopy Type. Topology17, 267–272 (1978)Google Scholar
  12. [M1]
    Masuda, M.: ℤ2 Surgery Theory and Smooth Involutions on Homotopy 150-2. Transformation Groups, Poznan 1985, Springer Lecture Notes in Math., vol.1217, pp. 258–89. Berlin Heidelberg New York: Springer 1986Google Scholar
  13. [M2]
    Masuda, M.: The Kervaire Invariant of Some Fiber Homotopy Equivalences. Adv. Studies in Pure Math.6. Amsterdam Kinokuniya North HollandGoogle Scholar
  14. [MP]
    Masuda, M., Petrie, T.: Lectures on Transformation Groups and Smith Equivalence. AMS Contemporary Math. vol.36, 1985Google Scholar
  15. [MT]
    Masuda, M., Tsai, Y.D.: Tangential Representations of Cyclic Group Actions on Homotopy Complex Projective Spaces. Osaka J. Math.22, 907–919 (1985)Google Scholar
  16. [MeP]
    Meyerhoff, A., Petrie, T.: Quasi-Equivalence ofG-Modules. Topology15, 69–75 (1976)Google Scholar
  17. [P1]
    Petrie, T.: Involutions on Homotopy Complex Projective Spaces and Related Topics. Proceedings of the Second Conference on Transformation Groups, Part 1, Lecture Notes in Math. vol.298. Berlin Heidelberg New York: Springer 1972Google Scholar
  18. [P2]
    Petrie, T.: SmoothS 1 Actions on Homotopy Complex Projective Spaces and Related Topics. Bull. AMS78, 105–153 (1972)Google Scholar
  19. [P3]
    Petrie, T.: Pseudo-equivalences ofG-Manifolds. Proc. Symp. Pure Math.32, 169–210 (1978)Google Scholar
  20. [PR]
    Petrie, T., Randall, J.: Transformation Groups on Manifolds. Dekker Lecture Series vol.48. New York Basel: Marcel Dekker Inc. 1984Google Scholar
  21. [S]
    Schultz, R.: Private communication to Y.D. Tsai, 1984Google Scholar
  22. [Sa]
    Sampaio, J.C.V.: Dissertation, Rutgers University 1987Google Scholar
  23. [Se]
    Serre, J.P.: Linear Representations of Finite Groups, Grad. Texts in Math. vol.42. Berlin Heidelberg New York: Springer 1982Google Scholar
  24. [Sh]
    Shaneson, J.: Wall's Surgery Obstruction Groups forG × ℤ. Ann. Math.90, 296–334 (1969)Google Scholar
  25. [Su]
    Sullivan, D.: Triangulating Homotopy Equivalences, Dissertation, Princeton UniversityGoogle Scholar
  26. [T]
    Tsai, Y.D.: Dissertation, Rutgers University 1985Google Scholar
  27. [W1]
    Wall, C.T.C.: Surgery on Compact Manifolds. New York London: Academic Press 1970Google Scholar
  28. [W2]
    Wall, C.T.C.: Norms of Units in Group Rings. Proc. Lond. Math. Soc. (3),29, 593–632 (1974)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Mark Hughes
    • 1
  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations