Mineralogy and Petrology

, Volume 50, Issue 1–3, pp 3–19 | Cite as

Magma mixing, the petrogenetic link between anorthositic suites and rapakivi granites, Åland,SW Finland

  • O. Eklund
  • S. Fröjdö
  • B. Lindberg


The Åland, rapakivi batholith consists of several granites that differ texturally and mineralogically from quartz-porphyritic varieties to rapakivi varieties with K-feldspar ovoids (wiborgites and pyterlites) and aplitic granites. Closely associated with the batholith there is a mafc magmatic series of dolerite dykes, norites, anorthosites and monzodiorites.

The earliest major intrusive phase of the Åland, rapakivi batholith consists of quartzporphyritic hornblende rapakivi. This rock contains small amoeboidal mafc enclaves, labradorite megacrysts, quartz ocelli, amphibole-mantled xenoliths and irregular clots of granophyric granite. These disequilibrium features are products of mixing between basaltic and granitic magmas. Geochemical modelling indicates that the quartzporphyritic hornblende rapakivi is a mixture of 15% hi-Fe monzodiorite (mafic endmember) and 85% quartz-feldspar porphyry (felsic end-member). The monzodiorite is derived from a norite-anorthosite-monzodiorite series. The quartz-feldspar porphyry is produced by partial melting of the country rock caused by intrusions of hot basic magma.

Structural, textural and geochemical features suggest that magma mixing was an important petrogenetic process in the formation of the earliest rapakivi granite intrusions in the Åland, rapakivi batholith. Petrographic evidence of magma mixing can also be found in the major intrusion of the batholith, the wiborgite rapakivi granites. Chemically the mixing is difficult to specify in these rocks because of a high proportion of felsic component. Zircon and apatite fractionation trends, however, indicate that the wiborgite rapakivis also contain components from a mixed source.


Rapakivi Granite Dolerite Dyke Petrogenetic Process Felsic Component Aplitic Granite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Magmamixing, die petrogenetische Verbindung zwischen Anorthositen und RapakiviGraniten, Åland, SW Finnland


Der Rapakivi Batholit von Åland besteht aus verschiedenen Graniten, die in ihrer Textur und Zusammensetzung das Feld von quarzporphyritischen über Rapakivigranite mit K-Feldspat-Ovoiden (Wiborgite und Pyterlite) und aplitischen Graniten abdecken. Eine mafische magmatische Serie von Dolerit-Gängen, Noriten, Anorthositen und Monzodioriten ist mit diesen Batholiten eng verbunden.

Die erste größere Intrusivphase des Åland, Rapakivi Batholiten besteht aus quarzporphyritischem Hornblende Rapakivi. Dieses Gestein enhält kleine Amöboide, mafische Enklaven, Labradorit Megakristalle, Quarzocelli, Xenolithe mit Amphibolrändern und unregelmäßige Aggregate von granophyrischem Granit. Diese Produkte von Ungleichgewichts-Bedingungen gehen auf die Mischung zwischen basaltischen und granitischen Magmen zurück. Geochemische Modelle zeigen, daß der quarzporphyritische Hornblende-Rapakivi eine Mischung von 15%. eisenreichen Monzodiorit (mafisches Endglied) und 85% Quarz-Feldspatporphyr (felsisches Endglied) ist. Der Monzodiorit stammt von einer Norit-Anorthosit-Monzodiorit Serie. Der QuarzFeldspat-Porphyr entstand durch teilweise Aufschmelzung des Nebengesteines, die durch Intrusionen heißen basischen Magmas verursacht wurden.

Strukturelle, texturelle und geochemische Daten zeigen, daß Magmamischung ein wichtiger petrogenetischer Prozeß der Bildung der frühesten Rapakivi-Granit-Intrusionen im Åland, Batholith waren. Petrographische Hinweise auf Magmamischung können auch in der größten Intrusion des Batholiths, dem Wiborg Rapakivi Granit, gefunden werden. Wegen des hohen Anteils felsischer Komponenten ist es schwierig, das Magmamixing in diesen Gesteinen chemisch zu quantifizieren. Zirkon- und Apatitfraktionierungs-Trends weisen jedoch darauf hin, daß auch die WiborgitRapakivis Komponenten aus einer gemischten Quelle enthalten.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson UB (1991) Granitoid episodes and mafic-felsic magma interaction in the Svecofennian of the Fennoscandian Shield, with main emphasis on the ≈ 1.8 Ga plutonics. Precambrian Res 51: 127–149Google Scholar
  2. Andersson UB, Eklund O (1991) Compositions and textures of feldspars in mingled quartzfeldspar porphyry and doleritic magmas of the Hammarudda complex, Åland, rapakivi batholith, SW Finland. In:Haapala I, Rämö OT (eds) Symposium Rapakivi Granites and Related Rocks. Geol Surv Finland Guide 34: 5 (Abstract)Google Scholar
  3. Barbarin B (1988) Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint-Julien-la Vêtre Monzogranite (Nord-Forez, Massif Central, France). Can J Earth Sci 25: 49–59Google Scholar
  4. Bergman L(1981) Geologocal map of Finland, 1 : 100000. Summary: Pre-Quaternary rocks of the Signilskär, Mariehamn and Geta map-sheet areas. Geol Surv Finland, 72ppGoogle Scholar
  5. 2 (1986) Structure and mechanism of intrusion of postorogenic granites in the archipelago of southwestern Finland. Acta Acad Aboensis (Ser B) 46 (5): 74Google Scholar
  6. Bridgwater D, Sutton J, Watterson J (1974) Crustal downfolding associated with igneous activity. Tectonophysics 21: 57–77Google Scholar
  7. Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least squares approximation. Science 163: 926–927Google Scholar
  8. Cantagrel JM, Didier J, Gourgaud A (1984) Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism. Phys Earth Planet Int 35: 63–76Google Scholar
  9. Carrigan CR, Eichelberger JC (1990) Zoning of magmas by viscosity in volcanic conduits. Nature 343: 248–251Google Scholar
  10. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen & Unwin, London, 450ppGoogle Scholar
  11. de la Roche H, Leterrier J, Grand Claude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses—its relationships with current nomenclature. Chem Geol 29: 183–210Google Scholar
  12. Didier J (1973) Granites and their enclaves: the bearing of enclaves on the origin of granites, Dev in Petrol 3. Elsevier, Amsterdam, 393ppGoogle Scholar
  13. Didier J, Barbarin B (1991) Enclaves and granite petrology. Dev in Petrol 13. Elsevier, Amsterdam, 625ppGoogle Scholar
  14. Ehlers C, Ehlers M (1977) Shearing and multiple intrusion in the diabases of Åland archipelago, SW Finland. Geol Surv Finland Bull 289: 31Google Scholar
  15. Eklund O (1991) Betydelsen av magmamixing som magmatisk evolutions process i tolkningen av post- och anorogena bergarters uppkomst, Åland sv Finland. Thesis, Abo Akademi University, 80pp (partly in English)Google Scholar
  16. Eklund O, Lindberg B (1990) Interpretation of geochemical relations between anorthositic suites and rapakivi massifs using multicationic parameters. In:Kähkönen Y (ed) Symposium Proterozoic Geochemistry, Helsinki '90. Department of Geology, University of Helsinki, pp 7–10 (Abstract)Google Scholar
  17. 2 (1992) Interaction between basaltic melts and their wallrock in dykes and sills in Åland, Southwestern Finland. Geol Fören Stockholm Förh 114 (1): 93–102Google Scholar
  18. Eklund O, Fröjdö S, Lindberg B, Andersson UB (1991) The link between anorthositic suites and rapakivi granites. In:Haapala I, Rämö OT (eds) Symposium Rapakivi Granites and Related Rocks. Geol Surv Finland Guide 34: 14 (Abstract)Google Scholar
  19. Emslie RF (1978) Anorthosite massifs, rapakivi granites and late Proterozoic rifting in North America. Precambrian Res 7: 61–98Google Scholar
  20. 2 (1991) Granitoids of rapakivi granite-anorthosite and related associations. Precambrian Res 51: 173–192Google Scholar
  21. Fröjdö S (1992) En anortositisk serie associerad med den Aldndska rapakivibatoliten. Theses, Abo Akademi University, 51pp (in swedish)Google Scholar
  22. Haapala I (1988) Metallogeny of the paroterozoic rapakivi granites of Finland. In:Taylor RP, Strong DF (eds) Recent advances in the geology of granite-related mineral deposits. CIMM Spec 39:124–132Google Scholar
  23. Haapala I, Ramö OT (1990) Petrogenesis of the Proterozoic rapakivi granites of Finland. In:Stein HJ, Hannah JL (eds) Ore-bearing granite systems; petrogenesis and mineralizing processes. Geol Soc Am Spec Pap 246: 275–286Google Scholar
  24. Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In:Didier J, Barbarin B (eds) Enclaves and granite petrology. Dev in Petrol 13. Elsevier, Amsterdam, 625ppGoogle Scholar
  25. Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalts into continental crust. J Pet 29: 599–624Google Scholar
  26. Kaitaro S (1953) Geologic structure of the late pre-cambrian intrusives in the Åva area, Åland, Islands. Bull Comm Geol Finlande 180: 45–64Google Scholar
  27. Kranck EH (1969) Anorhosites and rapakivi, magmas from the lower crust. In:Isachsen YV (ed) Origin of anorthosites and related rocks. NY State Mus Sci Serv Mem 18: 93–97Google Scholar
  28. Lindberg B, Eklund O (1989) The Rapakivi granite—diabase association in southwestern Finland. In: Haapala I,Kähkönen Y (eds) Symposium Precambrian Granitoids. Geol Surv Finland, Spec Pap 8: 82 (Abstract)Google Scholar
  29. 2 (1990) Sambandet mellan Subjotniska diabaser och rapakivi intrusioner i sydvästra Finland. English Summary: The relation between Subjotnian diabases and rapakivi intrusions in southwestern Finland. Geologi 3: 44–47Google Scholar
  30. 2 (1992) Mixing between basaltic and granitic magmas in a rapakivi related quartz-feldspar porphyry, Åland, SW Finland. Geol Fören Stockholm Förh 114 (1): 103–112Google Scholar
  31. Lindberg B, Eklund O, Suominen V (1991) Middle Proterozoic, Subjotnian diabases and related mafic rocks in the archipelago of southwestern Finland. In:Laitakari I (ed) IGCP-257 Fennoscandian Meeting and Excursion on Precambrian Dyke Swarms. IGCP-257 Technical Report 4:18–30Google Scholar
  32. Moorhouse SJ, Moorhouse VE (1979) The Moine amphibolite suites of central and northern Sutherland, Scotland. Min Mag 43: 211–225Google Scholar
  33. Morse SA (1982) A pertisa review of Proterozoic anorthosites. Am Miner 67: 1087–1100Google Scholar
  34. Nelson BK, DePaulo DJ (1985) Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basement of the North American Mid-continent. Geol Soc Am Bull 96: 746–754Google Scholar
  35. Pesonen LJ, Suominen VO, Noras P (1985) Paleomagnetism of the Subjotnian diabase dyke swarm of the Åland, archipelago, SW-Finland. In:Halls HC (ed) International Conference on Mafic Dyke Swarms. University of Toronto, Erindale College, Ontario, Canada, pp 129–130 (Abstract)Google Scholar
  36. Russel JK (1990) Magma mixing processes: insights and constraints from thermodynamic calculations. In:Nicholls J, Russel JK (eds) Modern igneous petrology-understanding magmatic processes. Rev Miner 24: 99–124Google Scholar
  37. Rämö OT (1991) Petrogenesis of the Proterozoic rapakivi granites and related basic rocks of southeastern Fennoscandia: Nd and Pb isotopic and general geochemical constraints Geol Surv Finland Bull 355: 161ppGoogle Scholar
  38. Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silisic magmas. J Vole Geotherm Res 29: 99–124Google Scholar
  39. Suominen V (1987) Lounais-Suomen mafiset juonikivet. English abstract: Mafic dyke rocks in southwestern Finland. In:Aro K, Laitakari I (eds) Suomen diabaasit ja muut mafiset juonikivilajit (Diabases and other mafic dyke rocks in Finland). Geol Surv Finland, Rep Invest 76: 151–172Google Scholar
  40. Suominen V (1991) The chronostratigraphy of southwestern Finland with special reference to Postjotnian and Subjotnian diabases. Geol Surv Finland Bull 356: 100Google Scholar
  41. Vaasjoki M, Rämö OT, Sakko M (1991) New U-Pb ages from the Wiborg rapakivi area: constraints on the temporal evolution of the rapakivi granite—anorthosite—diabase dyke association of southeastern Finland. Precambrian Res 51: 227–243Google Scholar
  42. Van Schmus WR, Bickford ME (1981) Proterozoic chronology and evolution of the midcontinent region, North America. In:Kröner A (ed) Precambrian plate tectonics. Elsevier, AmsterdamGoogle Scholar
  43. Vernon RH (1983) Restite, xenoliths and microgranitoid enclaves in granites. J Proc Roy Soc NSW 116: 77–103Google Scholar
  44. Vorma A (1976) On the petrochemistry of rapakivi granites with special reference to the Laitila massif, southwestern Finland. Geol Surv Finland Bull 285: 98Google Scholar
  45. Watson EB, Harrison TM (1984) Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectous of experimental approaches. Phys Earth Planet Inter 35: 19–30Google Scholar
  46. Welin E, Lundqvist Th (1984) Isotopic investigations of the Nordingrå rapakivi massif, north-central Sweden. Geol Fören Stockholm Förh 106: 41–49Google Scholar
  47. Windley BF (1986) The evolving continents, 2nd ed. John Wiley & Sons, Chichester, p 339Google Scholar
  48. Vorma A, Paasivirta T (1979) Contribution to the mineralogy of rapakivi granites. I. Zircon and the Laitila rapakivi, southwestern Finland. Geol Surv Finland Bull 303: 40Google Scholar
  49. Wyllie PJ, Cox GH, Biggar GM (1962) The habit of apatite in synthetic systems and igneous rocks. J Petrol 3: 238–243Google Scholar
  50. Zorpi MJ, Coulon C, Orsini JB, Cocirta C (1989) Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics 157: 315–329Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • O. Eklund
    • 1
  • S. Fröjdö
    • 1
  • B. Lindberg
    • 1
  1. 1.Department of Geology and MineralogyÅbo Akademi UniversityÅboFinland

Personalised recommendations