Advertisement

Mathematische Zeitschrift

, Volume 202, Issue 3, pp 299–311 | Cite as

On real hypersurfaces of a complex projective space

  • Makoto Kimura
  • Sadahiro Maeda
Article

Keywords

Projective Space Real Hypersurface Complex Projective Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cecil, T.E., Ryan, P.J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc.269, 481–499 (1982)Google Scholar
  2. 2.
    Ki, U.H., Nakagawa, H., Suh, Y.J.: Real hypersurfaces with harmonic Weyl tensor of a complex space form. (A preprint)Google Scholar
  3. 3.
    Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc.296, 137–149 (1986)Google Scholar
  4. 4.
    Kimura, M.: Sectional curvatures of holomorphic planes on a real hypersurfaces inP n(ℂ). Math. Ann.276, 487–497 (1987)Google Scholar
  5. 5.
    Kimura, M.: Real hypersurfaces of a complex projective space. Bull. Aust. Math. Soc.33, 383–387 (1986)Google Scholar
  6. 6.
    Kon, M.: Pseudo-Einstein real hypersurfaces in complex space forms. J. Differ. Geom.14, 339–354 (1979)Google Scholar
  7. 7.
    Kwon, J.H., Nakagawa, H.: A characterization of a real hypersurface of type A1 or A2 of a complex projective space. (A preprint)Google Scholar
  8. 8.
    Maeda, S.: Real hypersurfaces of complex projective spaces. Math. Ann.263, 473–478 (1983)Google Scholar
  9. 9.
    Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan28, 529–540 (1976)Google Scholar
  10. 10.
    Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc.212, 355–364 (1975)Google Scholar
  11. 11.
    Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math.10, 495–506 (1973)Google Scholar
  12. 12.
    Takagi, R.: Real hypersurfaces in a complex projective space with constant principal curvatures. I. II. J. Math. Soc. Japan27, 43–53, 507–516 (1975)Google Scholar
  13. 13.
    Udagawa, S.: Bi-order real hypersurfaces in a complex projective space. Kodai Math. J.10, 182–196 (1987)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Makoto Kimura
    • 1
  • Sadahiro Maeda
    • 2
  1. 1.Department of MathematicsSaitama UniversityUrawa, SaitamaJapan
  2. 2.Department of MathematicsKumamoto Institute of TechnologyKumamotoJapan

Personalised recommendations