Advertisement

Mathematische Zeitschrift

, Volume 173, Issue 2, pp 119–133 | Cite as

On equivariant isometric embeddings

  • John Douglas Moore
  • Roger Schlafly
Article

Keywords

Isometric Embedding Equivariant Isometric Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bieberbach, L.: Eine singularitätenfreie Fläche konstanter negativer Krümmung im Hilbertschen Raum. Comment. Math. Helv.4, 248–255 (1932)Google Scholar
  2. 2.
    Bredon, G.E.: Introduction to compact transformation groups. London-New York: Academic Press 1972Google Scholar
  3. 3.
    Cheeger, J., Ebin, D.: Comparison theorems in Riemannian geometry. Amsterdam: North-Holland 1975Google Scholar
  4. 4.
    Greene, R.E.: Isometric embeddings of Riemannian and pseudo-Riemannian manifolds. Mem. Amer. Math. Soc.97 (1970)Google Scholar
  5. 5.
    Greene, R.E., Jacobowitz, H.: Analytic isometric embeddings. Ann. of Math.93, 189–204 (1971)Google Scholar
  6. 6.
    Gromov, M.L.: Smoothing and inversion of differential operators. Math. USSR Sb.17, 381–435 (1972)Google Scholar
  7. 7.
    Gromov, M.L., Rokhlin, V.A.: Embeddings and immersions in Riemannian geometry. Russian Math. Surveys25, 1–57 (1970)Google Scholar
  8. 8.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. II. New York: Interscience 1969Google Scholar
  9. 9.
    Lang, S.: Fonctions implicites et plongements riemanniens. Séminaire Bourbaki exp.237. Paris: Secrétariat Mathematique 1962Google Scholar
  10. 10.
    Moore, J.D.: Equivariant embeddings of Riemannian homogeneous spaces. Indiana Univ. Math. J.25, 271–279 (1976)Google Scholar
  11. 11.
    Mostow, G.D.: Equivariant embeddings in Euclidean space. Ann. of Math.65, 432–446 (1957)Google Scholar
  12. 12.
    Narasimhan, R.: Analysis on real and complex manifolds. Paris: Masson 1968Google Scholar
  13. 13.
    Nash, J.: The imbedding problem for Riemannian manifolds. Ann. of Math.63, 20–63 (1956)Google Scholar
  14. 14.
    Schwartz, J.T.: Nonlinear functional analysis. New York: Gordon and Breach 1969Google Scholar
  15. 15.
    Sergeraert, F.: Une généralisation du théorème des fonctions implicites de Nash. C. R. Acad. Sci. Paris Ser. A, 861–863 (1970)Google Scholar
  16. 16.
    Sergeraert, F.: Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications. Ann. Sci. Ecole Norm. Sup. Sér. 45, 599–660 (1972)Google Scholar
  17. 17.
    Warner, F.W.: Foundations of differentiable manifolds and Lie groups. Glenview, Illinois: Scott, Foresman 1971Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • John Douglas Moore
    • 1
  • Roger Schlafly
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations