Mathematische Zeitschrift

, Volume 173, Issue 2, pp 119–133 | Cite as

On equivariant isometric embeddings

  • John Douglas Moore
  • Roger Schlafly
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bieberbach, L.: Eine singularitätenfreie Fläche konstanter negativer Krümmung im Hilbertschen Raum. Comment. Math. Helv.4, 248–255 (1932)Google Scholar
  2. 2.
    Bredon, G.E.: Introduction to compact transformation groups. London-New York: Academic Press 1972Google Scholar
  3. 3.
    Cheeger, J., Ebin, D.: Comparison theorems in Riemannian geometry. Amsterdam: North-Holland 1975Google Scholar
  4. 4.
    Greene, R.E.: Isometric embeddings of Riemannian and pseudo-Riemannian manifolds. Mem. Amer. Math. Soc.97 (1970)Google Scholar
  5. 5.
    Greene, R.E., Jacobowitz, H.: Analytic isometric embeddings. Ann. of Math.93, 189–204 (1971)Google Scholar
  6. 6.
    Gromov, M.L.: Smoothing and inversion of differential operators. Math. USSR Sb.17, 381–435 (1972)Google Scholar
  7. 7.
    Gromov, M.L., Rokhlin, V.A.: Embeddings and immersions in Riemannian geometry. Russian Math. Surveys25, 1–57 (1970)Google Scholar
  8. 8.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. II. New York: Interscience 1969Google Scholar
  9. 9.
    Lang, S.: Fonctions implicites et plongements riemanniens. Séminaire Bourbaki exp.237. Paris: Secrétariat Mathematique 1962Google Scholar
  10. 10.
    Moore, J.D.: Equivariant embeddings of Riemannian homogeneous spaces. Indiana Univ. Math. J.25, 271–279 (1976)Google Scholar
  11. 11.
    Mostow, G.D.: Equivariant embeddings in Euclidean space. Ann. of Math.65, 432–446 (1957)Google Scholar
  12. 12.
    Narasimhan, R.: Analysis on real and complex manifolds. Paris: Masson 1968Google Scholar
  13. 13.
    Nash, J.: The imbedding problem for Riemannian manifolds. Ann. of Math.63, 20–63 (1956)Google Scholar
  14. 14.
    Schwartz, J.T.: Nonlinear functional analysis. New York: Gordon and Breach 1969Google Scholar
  15. 15.
    Sergeraert, F.: Une généralisation du théorème des fonctions implicites de Nash. C. R. Acad. Sci. Paris Ser. A, 861–863 (1970)Google Scholar
  16. 16.
    Sergeraert, F.: Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications. Ann. Sci. Ecole Norm. Sup. Sér. 45, 599–660 (1972)Google Scholar
  17. 17.
    Warner, F.W.: Foundations of differentiable manifolds and Lie groups. Glenview, Illinois: Scott, Foresman 1971Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • John Douglas Moore
    • 1
  • Roger Schlafly
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations