Advertisement

Journal of Materials Science

, Volume 28, Issue 13, pp 3547–3556 | Cite as

Synthesis of cubic boron nitride using Mg and pure or M′-doped Li3N, Ca3N2 and Mg3N2 with M′=Al, B, Si, Ti

  • G. Bocquillon
  • C. Loriers-Susse
  • J. Loriers
Papers

Abstract

The growth pressure-temperature region of cubic boron nitride (cBN) in the systems Mg-BN and MxNy-BN (MxNy=Li3N, Ca3N2, Mg3N2) has been redetermined using well-crystallized hexagonal BN (hBN) with low oxygen content (0.2%) as the starting material. The data on the MxNy-BN systems are compatible with the existence of two growth regions: a high-temperature region where cBN grows from a liquid phase, and a low-temperature region where cBN forms from solid-solid reactions. Previous data are discussed according to this model and possible solid-state reactions are proposed on the basis of thermodynamic considerations. The results for the Mg-BN system confirm the effect of the O2 content of the starting BN on the cBN growth region. The systems (MxNy + M′)-BN (M′=Al, B, Si, Ti) have been shown to produce cBN crystals of increased size and improved morphology (more compact and perfect) compared to those obtained with the MxNy-BN systems. Their colour is dark or black and their size reaches 0.6 mm. The effect of the relative proportions of M′ and MxNy on the growth region and yield has been determined and is discussed on the basis of the chemical reactions likely to occur.

Keywords

Polymer Boron Hexagonal Liquid Phase Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Wentorf,J. Chem. Phys. 34 (1961) 809.Google Scholar
  2. 2.
    R. C. De Vries, J. F. Fleisher,J. Cryst. Growth 13/14 (1972) 88.Google Scholar
  3. 3.
    T. Sato, T. Endo, S. Kashima, O. Fukunaga, M. Iwata,J. Mater. Sci. 18 (1983) 3054.Google Scholar
  4. 4.
    T. Endo, O. Fukunaga, M. Iwata,J. Mater. Sci. 14 (1979) 1676.Google Scholar
  5. 5.
    H. M. Strong, R. E. Tuft, G. E. Report N∘74 CR D118 (Corporate Research and Development Distribution, Schenectady, N.Y., 1974).Google Scholar
  6. 6.
    G. Bocquillon, C. Loriers-Susse, J. Loriers,J. Mater. Sci. Lett 4 (1985) 141.Google Scholar
  7. 7.
    I. C. Getting, G. C. Kennedy,J. Appl. Phys. 41 (1970) 4552.Google Scholar
  8. 8.
    J. Thomas Jr,N. E. Weston, T. E. O'Conner,J. Amer. Chem. Soc. 84 (1963) 4619.Google Scholar
  9. 9.
    F. B. Bundy, R. H. Wentorf Jr,J. Chem. Phys. 38 (1963) 1144.Google Scholar
  10. 10.
    E. Tani, T. Soma, A. Sawaoka, S. Saito,Jap. J. Appl. Phys. 14 (1975) 1605.Google Scholar
  11. 11.
    E. Rapoport,Ann. Chim. Fr. 10 (1985) 607.Google Scholar
  12. 12.
    F. R. Corrigan, F. P. Bundy,J. Chem. Phys. 63 (1975) 3812.Google Scholar
  13. 13.
    T. Endo, O. Fukunaga, M. Iwata,J. Mater. Sci. 14 (1979) 1375.Google Scholar
  14. 14.
    O. Fukunaga, T. Sato, M. Iwata, H. Hiraoka, Proceedings of the 4th International Conference on High Pressure, Kyoto, in the Review of Physical Chemistry of Japan (Kawakita, Kyoto, 1975) p. 454.Google Scholar
  15. 15.
    M. M. Bindal, S. K. Singhal, B. P. Singh, R. K. Nayar, R. Chopra, A. Dhar,J. Cryst. Growth 112 (1991) p. 386.Google Scholar
  16. 16.
    K. Kudaka, H. Konno, T. Matoba,Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Section)69 (1966) 365.Google Scholar
  17. 17.
    M. Ushio, H. Saito, S. Nagano,ibid. 74 (1971) 598.Google Scholar
  18. 18.
    M. M. Bindal, B. P. Singh, S. K. Singhal, R. K. Nayar, R. Chopra, A. Dhar,J. Mater. Sci. 26 (1991) 196.Google Scholar
  19. 19.
    N. E. Filonenko, V. I. Iranov, L. I. Fel'dgun, M. I. Sokhor, L. F. Vereshchagin,Dokl. Akad. Nauk. SSSR 175 (1967) 1266.Google Scholar
  20. 20.
    L. F. Vereschagin, I. S. Gladkaya, G. A. Dubitskii, V. N. Slesarev,Izv. Akad. Nauk. SSSR, Neorg. Mater. 15 (1979) p. 256.Google Scholar
  21. 21.
    Von. J. Goubeau, W. Anselment,Zeit. f. anorg. allg. Chemie 310 (1961) p. 248.Google Scholar
  22. 22.
    R. C. De Vries, J. F. Fleisher,Mat. Res. Bull. 4 (1969) 433.Google Scholar
  23. 23.
    T. Endo, O. Fukunaga, M. Iwata,J. Mater. Sci 16 (1981) 2227.Google Scholar
  24. 24.
    V. P. Elyutin, N. I. Polushin, K. P. Burdina, V. P. Polyakov, Ya. A. Kalashnikov, K. N. Semenenko, Yu. A. Pavlov,Dokl. Akad. Nauk. SSSR,259 (1) (1981) 112.Google Scholar
  25. 25.
    C. Hohlfeld,J. Mater. Sci. Lett. 8 (1989) 1082.Google Scholar
  26. 26.
    H. Lorenz, B. Lorenz, U. Kuhne, C. Hohlfeld,J. Mater. Sci. 23 (1988) 3254.Google Scholar
  27. 27.
    T. Sato, H. Hiraoka, T. Endo, O. Fukunaga, M. Iwata,J. Mater. Sci. 16 (1981) 1829.Google Scholar
  28. 28.
    R. C. De Vries, General Electric Report N∘72 CR D178, (1972).Google Scholar
  29. 29.
    Y. Laurent,Rev. Chim. Miner. 5 (1968) 1019.Google Scholar
  30. 30.
    J. W. Dietz, US Patent 3531245, (1970).Google Scholar
  31. 31.
    R. Juza, K. Langer, K. Von Benda,Angew. Chem. International Edit. 7 5 (1968) 360.Google Scholar
  32. 32.
    B. G. Aleshin, A. A. Smekhnov, A. N. Sokolov, A. A. Shulzhenko,Dokl. Akad. Nauk. Ukr. SSR 12 (1984) 71.Google Scholar
  33. 33.
    H. Yoshihara, A. Onodera, K. Suito, H. Nakae, Y. Matsunami, T. Hirai,J. Mater. Sci. 25 (1990) 4595.Google Scholar
  34. 34.
    S. Hirano, T. Yamaguchi, S. Naka,J. Amer. Ceram. Soc. 64 (12) (1982) 734.Google Scholar
  35. 35.
    Kabushiki Kaisha Komatsu Seisakusho, Brevet Francais N∘74.08714, (1974).Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • G. Bocquillon
    • 1
  • C. Loriers-Susse
    • 1
  • J. Loriers
    • 1
  1. 1.Laboratoire de Physicochimie des MatériauxCNRSMeudon Principal CedexFrance

Personalised recommendations