Critical Bellman-Harris branching processes starting with a large number of particles

  • V. A. Vatutin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. A. Sevast'yanov, Branching Processes [in Russian], Nauka, Moscow (1971).Google Scholar
  2. 2.
    T. E. Harris, The Theory of Branching Processes, Springer, Berlin (1963).Google Scholar
  3. 3.
    K. B. Athreya and P. E. Ney, Branching Processes, Springer, New York (1972).Google Scholar
  4. 4.
    J. Lamperti, “The limit of a sequence of branching processes,” Z. Wahrsch. Verw. Gebiete7, 7, 271–288 (1967).Google Scholar
  5. 5.
    A. Grimvall, “On the convergence of sequences of branching processes,” Ann. Probab.,2, No. 6, 1027–1045 (1974).Google Scholar
  6. 6.
    S. A. Aliev and V. M. Shurenkov, “Transition phenomena and the convergence of Galton-Watson processes to Jirina processes,” Teor. Veroyatn. Primen.,27, No. 3, 443–455 (1982).Google Scholar
  7. 7.
    V. M. Shurenkov, “Two limit theorems for critical branching processes,” Teor. Veroyatn. Primen.,21, No. 3, 389–394 (1976).Google Scholar
  8. 8.
    V. A. Vatutin, “Discrete limit distributions of the number of particles in critical Bellman-Harris branching processes,” Teor. Veroyatn. Primen.,22, No. 1, 150–155 (1977).Google Scholar
  9. 9.
    A. L. Yakymiv, “The asymptotic behavior of the probabilities of the extensions of critical Bellman-Harris processes,” Tr. Mat. Inst. Akad. Nauk SSSR,177, 177–205 (1986).Google Scholar
  10. 10.
    B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading (1954).Google Scholar
  11. 11.
    R. S. Slack, “A branching process with mean one and possibly infinite variance,” Z. Wahrsch. Verw. Gebiete,9, No. 2, 139–145 (1968).Google Scholar
  12. 12.
    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York (1966).Google Scholar
  13. 13.
    E. Seneta, Regularly Varying Functions, Lecture Notes in Math., No. 508, Springer, Berlin (1976).Google Scholar
  14. 14.
    S. G. Tkachuk, “Theorems on large deviations in the case of distributions with regularly varying tails,” in: Random Processes and Statistical Inference, No. 5 [in Russian], Fan, Tashkent (1975), pp. 164–174.Google Scholar
  15. 15.
    A. N. Kolmogorov and S. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1972).Google Scholar
  16. 16.
    V. A. Vatutin and S. M. Sagitov, “Decomposable branching processes with two types of particles,” Trudy Mat. Inst. Akad. Nauk SSSR,177, 3–20 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • V. A. Vatutin
    • 1
  1. 1.V. A. Steklov Institute ot MathematicsAcademy of Sciences of the USSRUSSR

Personalised recommendations