Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On almost Blaschke manifolds I

  • 36 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Besse, A.L.: Manifolds all of whose geodesics are closed. Ergebnisse der Math.93. Berlin-Heidelberg-New York: Springer 1978

  2. 2.

    Bott, R.: On manifolds all of whose geodesics are closed. Ann. Math.60, 375–382 (1954)

  3. 3.

    Buchner, M.: Stability of cut locus in dimension less than or equal to six. Invent. Math.43, 199–231 (1977)

  4. 4.

    Buchner, M.: The structure of cut locus in dimension less than or equal to six. Compos. Math.37, 103–119 (1978)

  5. 5.

    Cheeger, J., Ebin, D.: Comparison Theorem in Riemannian Geometry. Amsterdam: North-Holland 1975

  6. 6.

    Durumeric, O.: Manifolds with almost equal diameter and injectivity radius. J. Differ. Geom.19, 453–474 (1984)

  7. 7.

    Gluck, H., Warner, F., Yang, C.T.: Division algebras, fibrations of spheres by great spheres and the topological determination of space by the gross behaviour of its geodesics. Duke Math. J.50, 1041–1073 (1983)

  8. 8.

    Hirsch, M.: Differential Topology. Graduate Texts in Math.33. Berlin-Heidelberg-New York: Springer 1976

  9. 9.

    Itoh, J.: Some considerations on the cut locus of a Riemannian manifold. In: Geometry of Geodesics and Related Topics. Adv. Studies in Pure Math.3, pp. 29–46. Tokyo: Kinokuniya 1984

  10. 10.

    Itoh, J.: On almost Blaschke manifolds II. Preprint.

  11. 11.

    Nakagawa, H.: A note on the theorem of Bott and Samelson. J. Math. Kyoto Univ.7, 127–136 (1972)

  12. 12.

    Rouke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Ergebnisse der Math.69. Berlin-Heidelberg-New York: Springer 1972

  13. 13.

    Sakai, T.: On continuity of injectivity radius function. Math. J. Okayama Univ.25, 91–97 (1983)

  14. 14.

    Sato, H.: On topological Blaschke conjecture I. In: Geometry of Geodesics and Related Topics. Adv. Studies in Pure Math.3, pp. 231–238. Tokyo: Kinokuniya 1984

  15. 15.

    Sato, H., Mizutani, T.: On topological Blaschke conjecture II. Tôhoku Math. J. II. Ser.36, 159–174 (1984)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Itoh, J. On almost Blaschke manifolds I. Math Z 190, 63–72 (1985). https://doi.org/10.1007/BF01159164

Download citation