Mathematische Zeitschrift

, Volume 190, Issue 1, pp 17–38

On the theory and classification of Abelianp-groups

  • Paul Hill
  • Charles Megibben
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuchs, L.: Infinite abelian groups, Vol. II. New York: Academic Press 1973Google Scholar
  2. 2.
    Fuchs, L.: Valued vector spaces. J. Algebra35, 23–38 (1975)Google Scholar
  3. 3.
    Fuchs, L.: Extensions of isomorphisms between subgroups. Lecture Motes in Math., Vol.874, pp. 289–296. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  4. 4.
    Griffith, P.: Infinite abelian groups. Chicago, Ill.: Univ. of Chicago Press 1970Google Scholar
  5. 5.
    Hill, P.: On the classification, of abelian groups. Photocopied manuscript, 1967Google Scholar
  6. 6.
    Hill, P.: Criteria for freeness in groups and valuated vector spaces. Lecture Notes in Math., Vol.616, pp. 140–157. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  7. 7.
    Hill, P.: Isotype subgroups of totally projective groups. Lecture Notes in Math., Vol.874, pp. 305–321, Berlin, Heidelberg, New York: Springer 1981Google Scholar
  8. 8.
    Hill, P.: The equivalence of high subgroups. Proc. Am. Math. Soc.88, 207–211 (1983)Google Scholar
  9. 9.
    Hill, P.: On the structure of abelianp-groups. Trans. Am. Math. Soc.288, 505–525 (1985)Google Scholar
  10. 10.
    Hill, P., Megibben, C.: On direct sums of countable groups and generalizations. Studies on Abelian Groups, pp. 183–206. Paris: Dunod 1968Google Scholar
  11. 11.
    Hunter, R., Walker, E.:S-groups revisited. Proc. Am. Math. Soc.82, 13–18 (1981)Google Scholar
  12. 12.
    Kaplansky, I., Mackey, G.: A generalization of Ulm's Theorem. Summa Brasil. Math.2, 195–202 (1951)Google Scholar
  13. 13.
    Kolettis, G.: Direct sums of countable groups. Duke Math. J.27, 111–125 (1960)Google Scholar
  14. 14.
    Megibben, C.: Totally Zippinp-groups. Proc. Am. Math. Soc.91, 15–18 (1984)Google Scholar
  15. 15.
    Nunke, R.: Homology and direct sums of countable abelian groups. Math. Z.101, 182–212 (1967)Google Scholar
  16. 16.
    Richman, F., Walker, E.: Valuated groups. J. Algebra56, 145–167 (1979)Google Scholar
  17. 17.
    Stanton, R.:S-groups. PreprintGoogle Scholar
  18. 18.
    Ulm, H.: Zur Theorie der abzahlbar-unendlichen abelschen Gruppen., Math. Ann.107, 774–803 (1933)Google Scholar
  19. 19.
    Warfield, R.: A classification theorem for abelianp-groups. Trans. Am. Math. Soc.210, 149–168 (1975)Google Scholar
  20. 20.
    Warfield, R.: The structure of mixed abelian groups. Lecture Notes in Math., Vol.616, pp. 1–38. Berlin, Heidelberg, New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Paul Hill
    • 1
  • Charles Megibben
    • 2
  1. 1.Department of MathematicsAuburn UniversityAuburnUSA
  2. 2.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations