Weak topology of an associated space and t-equivalence

  • O. G. Okunev
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. V. Arkhangel'skii, “Function spaces in the topology of pointwise convergence, Part 1,” in: General Topology. Function Spaces and Dimensionality [in Russian], Moscow State Univ. (1985).Google Scholar
  2. 2.
    A. V. Arkhangel'skii, “Structure and classification of topological spaces and cardinal invariants,” Usp. Mat. Nauk,33, No. 6, 29–84 (1978).Google Scholar
  3. 3.
    A. V. Arkhangel'skii, “On some topological spaces occurring in functional analysis,” Usp. Mat. Nauk,31, No. 5, 17–32 (1976).Google Scholar
  4. 4.
    A. V. Arkhangel'skii, “Functional tightness, Q-spaces, and τ-embeddings,” Comment. Math. Univ. Carolinae,24, No. 1, 105–120 (1983).Google Scholar
  5. 5.
    S. P. Gyl'ko and T. E. Khmyleva, “Compactness is not preserved by t-equivalence,” Mat. Zametki,39, No. 6, 895–903 (1986).Google Scholar
  6. 6.
    A. V. Arkhangel'skii, “Hurewitz spaces, analytic sets, and fan tightness of function spaces,” Dokl. Akad. Nauk SSSR,287, No. 3, 525–528 (1986).Google Scholar
  7. 7.
    N. V. Velichko, Continuous Mappings and Spaces of Continuous Functions, Avtoref. Dis., Dokt. Nauk [in Russian], Tyumen', Moscow (1983).Google Scholar
  8. 8.
    A. V. Arkhangel'skii, “Spaces of functions in the topology of pointwise convergence and compacta,” Usp. Mat. Nauk,39, No. 5, 11–50 (1984).Google Scholar
  9. 9.
    O. G. Okunev, “On spaces of functions in the topology of pointwise: convergence: the Hewitt extension and τ-continuous functions,” Mosk. Gos. Univ., Vestn. Ser. 1, Mat. Mekh., No. 4, 78–80 (1985).Google Scholar
  10. 10.
    K. Nagami, “σ-Spaces,” Fund. Math.,65, No. 2, 169–192 (1969).Google Scholar
  11. 11.
    A. Rogers, E. Jayne, et al., Analytic Sets, Academic Press, London (1980).Google Scholar
  12. 12.
    O. G. Okunev, “On a method of constructing examples of M-equivalent spaces,” Moscow State Univ. (1984). Dep. in VINITI May 8, 1985, Nos. 240–285.Google Scholar
  13. 13.
    A. V. Arkhangel'skii and V. V. Tkachuk, Function Spaces and Topological Invariants, Moscow State Univ. (1985).Google Scholar
  14. 14.
    E. G. Pytkeev, “Tightness of spaces of continuous functions,” Usp. Mat. Nauk,37, No.1, 157–158 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • O. G. Okunev
    • 1
  1. 1.Kalinin State UniversityUSSR

Personalised recommendations