Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Irreducible representations of modular Lie algebras

  • 34 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    B. Yu. Veisfeller and V. G. Katz, “Irreducible representations of Lie p-algebras,” Funkts. Anal. Prilozhen.,5, No. 2, 28–36 (1971).

  2. 2.

    H. Zassenhaus, “The representations of Lie algebras of prime characteristic,” Proc. Glasgow Math. Assoc,2, No. 1, 1–36 (1954).

  3. 3.

    A. A. Mil'ner, “Irreducible representations of modular Lie algebras,” Izv. Akad. Nauk SSSR, Ser. Mat.,39, 1240–1259 (1975).

  4. 4.

    A. N. Rudakov, “On the representation of the classical Lie algebras in characteristic p,” Izv. Akad. Nauk SSSR, Ser. Mat.,34, 735–743 (1970).

  5. 5.

    J. Schue, “Representations of solvable Lie p-algebras,” J. Algebra,38, 253–267 (1976).

  6. 6.

    H. Zassenhaus, “Uber Liesche Ringe mit Primzahl characteristik,” Abh. Math. Sem. Univ. Hamburg,13, No. 1/2, 1–100 (1939).

  7. 7.

    A. N. Grishkov, “Irreducible representations of completely solvable Lie p-algebras,” Algebra Logika,16, No. 3, 283–299 (1977).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 30, No. 1, pp. 21–26, July, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grishkov, A.N. Irreducible representations of modular Lie algebras. Mathematical Notes of the Academy of Sciences of the USSR 30, 496–499 (1981). https://doi.org/10.1007/BF01158816

Download citation


  • Irreducible Representation