Queueing Systems

, Volume 7, Issue 1, pp 63–99 | Cite as

Workstation performance as a function of local memory in distributed environments

  • R. A. Barack
  • M. K. V. Gerolimatos
  • A. J. Lemoine
  • M. L. Wenocur
  • R. L. WilsonJr.
Invited Paper
  • 34 Downloads

Abstract

A case study effort to model distributed computer-aided engineering environments is presented. Typical environments will be hosted on graphics workstations communicating over a local-area-network and supported by one or more file-servers. The paper describes our initial attempts at quantifying performance of alternate architectures being proposed for these engineering environments. Specifically, we focus on predicting workstation performance as a function of local memory. The modeling approach includes Generalized Stochastic Petri Nets (GSPN), Multiclass (BCMP) Queueing Networks, and an experimental method of measuring program characteristics for input parameter estimation.

Keywords

Workstation performance computer-aided engineering demand paging virtual memory management page-fault lifetime curve generalized stochastic Petri net multiclass closed queueing network Markov chain attracting point Liapunov function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ajmone Marsan, G. Balbo and G. Conte,Performance Models of Multiprocessor Systems (MIT Press Cambridge, MA, 1986).Google Scholar
  2. [2]
    R.A. Barack and A.J. Lemoine,PENGUIN Introductory Guide (Ford Aerospace Corporation, San Jose, CA, 1990).Google Scholar
  3. [3]
    W. Brauer, W. Reisig and G. Rozenberg (eds.),Petri Nets: Central Models and Their Properties, Lecture Notes in Computer Science 254 (Springer, Berlin, 1987).Google Scholar
  4. [4]
    W. Brauer, W. Reisig and G. Rozenberg (eds.),Petri Nets: Applicatons and Relationships to Other Models of Concurrency, Lecture Notes in Computer Science 255 (Springer, Berlin, 1987).Google Scholar
  5. [5]
    R.W. Carr,Virtual Memory Management (UMI Research Press, Ann Arbor, 1984).Google Scholar
  6. [6]
    A.E. Conway and N.D. Georganas,Queueing Networks — Exact Computational Algorithms (MIT Press, Cambridge, MA, 1989).Google Scholar
  7. [7]
    D. Ferrari, G. Serazzi and A. Zeigner,Measurement and Tuning of Computer Systems (Prentice-Hall, Englewood Cliffs, NJ, 1983).Google Scholar
  8. [8]
    E. Gelenbe and I. Mitrani,Analysis and Synthesis of Computer Systems (Academic Press, London, 1980).Google Scholar
  9. [9]
    N.J. Gunther, Path integral methods for computer performance analysis, Info. Proc. Lett. 32 (1989) 7.Google Scholar
  10. [10]
    P.J. Haas and G.S. Shedler, Modeling power of stochastic Petri nets for simulation, Probab. Eng. Inform. Sci. 2 (1988) 435.Google Scholar
  11. [11]
    F.B. Hildebrand,Introduction to Numerical Analysis, 2nd ed. (Dover, New York, 1987).Google Scholar
  12. [12]
    D.G. Luenberger,Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973).Google Scholar
  13. [13]
    T. Murata, Petri nets: properties, analysis and applications, Proc. IEEE 77 (1989) 541.Google Scholar
  14. [14]
    J.N. Murphy and R.B. Bunt, Characterizing program behavior with phases and transitions, in:Proc. 1988 ACM Sigmetrics Conf. on Measurement and Modeling of Computer Systems (ACM Press, New York, 1988) p. 226.Google Scholar
  15. [15]
    R. Nelson, Stochastic catastrophe theory in computer performance modeling, J. Assoc. Comput. Mach. 34 (1987) 661.Google Scholar
  16. [16]
    J.L. Peterson,Petri Net Theory and the Modeling of Systems (Prentice-Hall, Englewood Cliffs, NJ, 1981).Google Scholar
  17. [17]
    G. Rozenberg (ed.),Advances in Petri Nets 1987, Lecture Notes in Computer Science 266 (Springer, Berlin, 1987).Google Scholar
  18. [18]
    W. Szpankowski, Stability conditions for multidimensional queueing systems with computer applications, Oper. Res. 36 (1988) 944.Google Scholar
  19. [19]
    W. Szpankowski and V. Rego, Some theorems on instability with applications to multiaccess protocols, Oper. Res. 36 (1988) 958.Google Scholar
  20. [20]
    P. Whittle,Systems in Stochastic Equilibrium (Wiley, Chichester, 1986).Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • R. A. Barack
    • 1
  • M. K. V. Gerolimatos
    • 1
  • A. J. Lemoine
    • 1
  • M. L. Wenocur
    • 1
  • R. L. WilsonJr.
    • 1
  1. 1.Ford Aerospace CorporationSan JoseUSA

Personalised recommendations