Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Equivalent definitions of a perfect system and some of its properties

  • 24 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    O. Goldman, “Rings and modules of quotients” J. Algebra,13, No. 1, 10–47 (1969).

  2. 2.

    V. P. Elizarov, “Strong pretorsions and strong filters, modules and rings of quotients,” Sib. Mat. Zh.,14, No. 3, 549–559 (1973).

  3. 3.

    V. P. Elizarov, “On rings of quotients of associative rings,” Izv. Akad. Nauk SSSR, Ser. Mat.,24, 153–170 (1960).

  4. 4.

    A. T. Ludgate, “A note on noncommutative Noetherian rings,” J. London Math. Soc.,5, No. 2, 506–508 (1972).

  5. 5.

    M. Satyanarayana, “Local quotient rings,” Proc. Am. Math. Soc.,19, No. 9, 1313–1320 (1968).

  6. 6.

    V. P. Elizarov, “Generalized classical rings of quotients,” Mat. Zametki,11, No. 6, 677–686 (1972).

  7. 7.

    J. K. Luedeman, “On orders in principal left ideal rings and left elemental annihilator rings,” Math. Ann.,185, 309–314 (1970).

  8. 8.

    D. C. Murdoch and F. Van Oystayen, “Noncommutative localization and sheaves,“ J. Algebra,35, 500–515 (1975).

  9. 9.

    F. Van Oystayen, “Extension of ideals under symmetric localization,” J. Pure Appl. Algebra,6, 275–283 (1975).

  10. 10.

    V. P. Elizarov, “An axiomatic definition of a ring of quotients,” Mat. Zametki,15, No. 2, 255–262 (1974).

  11. 11.

    N. Popescu and T. Spircu, “Quelques observations sur les epimorphismes plats (a gauchas) d'anneaux,” J. Algebra,16, No. 1, 40–59 (1970).

  12. 12.

    V. P. Elizarov, “Rings of quotients with respect to semiperfect systems,” in: Abstracts of the Communications of the Third All-Union Symposium on the Theory of Rings, Modules, and Algebras [in Russian], Tartu (1976), p. 43.

  13. 13.

    H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton (1956).

  14. 14.

    B. Stenström, Rings and Modules of Quotients, Lecture Notes in Math., No. 237, Springer-Verlag, Berlin-New York (1971).

  15. 15.

    J. Lambek, Torsion Theories, Additive Semantics and Rings of Quotients, Lecture Notes in Math., No. 177, Springer-Verlag, Berlin-New York (1971).

  16. 16.

    V. P. Elizarov, “Artinian rings of quotients,” Usp. Mat. Nauk,30, No. 2, 211–212 (1975).

  17. 17.

    V. P. Elizarov, “On the general theory of rings of quotients,” Sib. Mat. Zh.,1l, No. 3, 526–546 (1970).

Download references

Additional information

Translated from Matematicheskie Zametki, Vol. 29, No. 3, pp. 335–350, March, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elizarov, V.P. Equivalent definitions of a perfect system and some of its properties. Mathematical Notes of the Academy of Sciences of the USSR 29, 173–181 (1981). https://doi.org/10.1007/BF01158524

Download citation

Keywords

  • Equivalent Definition
  • Perfect System