Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isoperimetric inequalities for Riemannian products

  • 53 Accesses

  • 6 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. K. Guschin, “Estimates: of solutions of boundary problems for parabolic second-order equations,” Tr. MIAN SSSR,126, 5–45 (1973).

  2. 2.

    V. V. Minakhin, “Liouville's theorem and the Harnack inequality for Beltrami's equation on an arbitrary manifold,” Funkts. Anal. Prilozhen.,14, No. 2, 71–72 (1980).

  3. 3.

    S. Y. Cheng, P. Li, and S. T. Yau, “On the upper estimate of the heat kernel of a complete Riemannian manifold,” Am. J. Math.,105, No. 5, 1021–1063 (1981).

  4. 4.

    A. A. Grigor'yan, “A Liouville theorem on a Riemannian manifold,” Tr. Tbilisskogo Univ., Ser. Mat., Mekh., Astron.,232-233, No. 13–14, 49–76 (1982).

  5. 5.

    A. A. Grigor'yan, “Existence of a Green's function on a manifold,” Usp. Mat. Nauk,38, No. 1, 161–162 (1983).

  6. 6.

    S. T. Yau, “Isoperimetric constant and the first eigenvalue of a compact Riemannian manifold,” Ann. Sci. Ecole Norm. Sup., Ser. IV,8, No. 4, 487–507 (1975).

  7. 7.

    D. Hoffman and J. Spruck, “Sobolev and isoperimetric inequalities for Riemannian sub-manifolds,” Commun. Pure Appl. Math.,27, No. 6, 715–727 (1974).

  8. 8.

    W. Mazja, Einbettungssätze für Sobolewsche Räume, Vol. 1, Teubner, Leipzig (1979).

  9. 9.

    A. A. Grigor'yan, “Harmonically degenerate manifolds,” Usp. Mat. Nauk,37, No. 4, 106 (1982).

  10. 10.

    H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin (1969).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 38, No. 4, pp. 617–626, October, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grigor'yan, A.A. Isoperimetric inequalities for Riemannian products. Mathematical Notes of the Academy of Sciences of the USSR 38, 849–854 (1985). https://doi.org/10.1007/BF01158414

Download citation


  • Isoperimetric Inequality
  • Riemannian Product