The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets

  • É. M. Galeev


Periodic Function Kolmogorov Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. S. Bakhvalov, “Embedding theorems for classes of functions with several bounded derivatives,” Vestn. Mosk. Gos. Univ., Ser. Mat., Mekh., No. 3, 7–16 (1963).Google Scholar
  2. 2.
    B. S. Kashin, “Diameters of certain finite-dimensional sets and of classes of smooth functions,” Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 2, 334–351 (1977).Google Scholar
  3. 3.
    V. E. Maiorov, “Discretization of a problem of diameters,” Usp. Mat. Nauk,30, No. 6, 179–180 (1975).Google Scholar
  4. 4.
    V. M. Tikhomirov, “Certain questions of approximation theory,” Dokl. Akad. Nauk SSSR,160, No. 4, 774–777 (1965).Google Scholar
  5. 5.
    G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge (1964).Google Scholar
  6. 6.
    A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).Google Scholar
  7. 7.
    A. N. Kolmogorov, A. A. Petrov, and Yu. M. Smirnov, “A formula of Gauss from the theory of the method of least squares,” Izv. Akad. Nauk SSSR, Ser. Mat.,11, No. 6, 561–566 (1947).Google Scholar
  8. 8.
    M. I. Stesin, “The Aleksandrov diameters of sets and classes of smooth functions,” Doklo Akad. Nauk SSSR,220, No. 6, 1278–1281 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • É. M. Galeev
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations