Advertisement

Hierarchy of complexity of computation of partial functions with values 0 and 1

  • A. P. Bel'tyukov
Article
  • 28 Downloads

Keywords

Partial Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. C. Hennie and R. E. Stearns, “Two-tape simulation of multitape Turing machines,” J. Assoc. Comput. Mach.,13, No. 4, 533–546 (1966).Google Scholar
  2. 2.
    R. E. Steams, J. Hartmanis, and P. M. Lewis II, “Hierarchies of memory limited computations,” in: IEEE Conf. Rec. Switch. Circuit Theory and Logic. Design, New York (1965), pp. 179–190.Google Scholar
  3. 3.
    O. H. Ibarra, “A hierarchy theorem for polynomial space recognition,” J. Comput. Syst. Sci.,11, No. 1, 56–67 (1975).Google Scholar
  4. 4.
    W. J. Paul, “On time hierarchies,” in: Proceedings of the 9th Annual ACM Symposium on Theory of Computing, Boulder (1977), pp. 218–222.Google Scholar
  5. 5.
    J. I. Seiferas, M. J. Fisher, and A. R. Meyer, “Refinements of the nondeterministic time and space hierarchies,” in: Proceedings of the 14th Annual Symposium on Switching and Automata Theory, Iowa (1973), pp. 130–137.Google Scholar
  6. 6.
    J. I. Seiferas, Nondeterministic Time and Space Complexity Classes, Project MAC Technical Raport 137, Massachusetts Institute of Technology (1974).Google Scholar
  7. 7.
    J. I. Seiferas, “Techniques for separating space complexity classes,” J. Comput. Syst. Sci.,14, No. 1, 73–99 (1977).Google Scholar
  8. 8.
    J. I. Seiferas, “Relating refined space complexity classes,” J. Comput. Syst. Sci.,14, No.1, 100–129 (1977).Google Scholar
  9. 9.
    M. Blum, “A machine-independent theory of the complexity of recursive functions,” J. Assoc. Comput., Mach.,14, No. 2, 322–336 (1967).Google Scholar
  10. 10.
    B. A. Trakhtenbrot, Compiexity of Algorithms and Computations [in Russian], Novosibirsk (1967).Google Scholar
  11. 11.
    A. I. Mal'tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).Google Scholar
  12. 12.
    R. L. Constable, “The operator gap,” J. Assoc. Comput. Mach.,19, No. 1, 175–183 (1972).Google Scholar
  13. 13.
    S. A. Cook, “A hierarchy for nondeterministic time complexity,” J. Comput. Syst. Sci.,7, No. 4, 343–353 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. P. Bel'tyukov
    • 1
  1. 1.Leningrad State UniversityUSSR

Personalised recommendations