Linearized statement of the problem of determining hyperbolic operators

  • V. G. Romanov
  • V. G. Yakhno


Hyperbolic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. S. Blagoveshchenskii, “One-dimensional converse boundary-value problem for second-order hyperbolic equation,” in: Mathematical Problems of Wave Propagation Theory [in Russian], Vol. 2, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,15, 85–90 (1969).Google Scholar
  2. 2.
    V. G. Yakhno, “Uniqueness theorm for a converse problem for a hyperbolic equation,” Differents. Uravn.,13, No. 3, 544–551 (1977).Google Scholar
  3. 3.
    A. L. Bukhgeim and V. G. Yakhno, “Two problems for differential equations,” Dokl. Akad. Nauk SSSR,229, No. 4, 785–786 (1976).Google Scholar
  4. 4.
    V. G. Romanov, Some Converse Problems for Hyperbolic Equations [in Russian], Nauka, Novosibirsk (1972).Google Scholar
  5. 5.
    S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics [in Russian], Nauka, Novosibirsk (1962).Google Scholar
  6. 6.
    R. Courant, Partial Differential Equations, Wiley (1965).Google Scholar
  7. 7.
    L. Hormander, Linear Partial Differential Operators, Springer-Verlag (1964).Google Scholar
  8. 8.
    V. G. Romanov, Converse Problems for Differential Equations. Special Course of Lectures [in Russian], Novosibirsk State Univ. (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. G. Romanov
    • 1
  • V. G. Yakhno
    • 1
  1. 1.Computing Center, Siberian BranchAcademy of Sciences of the USSRUSSR

Personalised recommendations