manuscripta mathematica

, Volume 45, Issue 3, pp 249–272 | Cite as

Springer forms and the first Tits construction of exceptional Jordan division algebras

  • Holger P. Petersson
  • Michel L. Racine


In this paper, a certain quadratic form, originally due to Springer [15], which may be associated with any separable cubic subfield living inside an exceptional simple Jordan algebra is related to the coordinate algebra of an appropriate scalar extension. We use this relation to show that, in the presence of the third roots of unity, exceptional Jordan division algebras arising from the first Tits construction are precisely those where reducing fields and splitting fields agree, and that all isotopes of a first construction exceptional division algebra are isomorphic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, A. A. Structure of algebras. Colloq. Publ., Vol. 24, Amer. Math. Soc., Providence, R. I., 1939Google Scholar
  2. 2.
    — A construction of exceptional Jordan division algebras. Ann. of Math. (2)67 (1958), 1–28Google Scholar
  3. 3.
    — On exceptional Jordan division algebras. Pacific J. Math.15 (1965), 377–404Google Scholar
  4. 4.
    Ferrar, J. C. Generic splitting fields of composition algebras. Trans. Amer. Math. Soc.128 (1967), 506–514Google Scholar
  5. 5.
    Jacobson, N. Structure and representations of Jordan algebras. Colloq. Publ., Vol. 39, Amer. Math. Soc., Providence, R. I., 1968Google Scholar
  6. 6.
    Lang, S. Algebra. Addison-Wesley Publishing Company, Reading, MS, 1965Google Scholar
  7. 7.
    Loos, O. Jordan pairs. Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-Heidelberg-New York, 1975Google Scholar
  8. 8.
    McCrimmon, K. The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras. Trans. Amer. Math. Soc.139 (1969), 495–510Google Scholar
  9. 9.
    — The Freudenthal-Springer-Tits constructions revisited. Trans. Amer. Math. Soc.148 (1970), 293–314Google Scholar
  10. 10.
    Petersson, H. P. Composition algebras over a field with a discrete valuation. J. of Algebra29 (1974), 414–426Google Scholar
  11. 11.
    Petersson, H. P. and M. L. Racine. Exceptional Jordan division algebras. Contemporary Mathematics13 (1982), 307–316Google Scholar
  12. 12.
    - Jordan algebras of degree 3 and the Tits process. To appearGoogle Scholar
  13. 13.
    - Pure and blende Tits constructions of exceptional Jordan division algebras. To appearGoogle Scholar
  14. 14.
    Springer, T. A. Sur les formes quadratiques d'indice zéro. C. R. Acad. Sci. Paris234 (1952), 1517–1519Google Scholar
  15. 15.
    — Oktaven, Jordan-Algebren und Ausnahmegruppen. University of Göttingen Lecture Notes, Göttingen, 1963Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Holger P. Petersson
    • 1
  • Michel L. Racine
    • 2
  1. 1.Fachbereich Mathematik und Informatik FernUniversitätHagenBundesrepublik Deutschland
  2. 2.Department of MathematicsUniversity of OttawaOttawaCanada

Personalised recommendations