Lower bounds on monotone complexity of the logical permanent

  • A. A. Razborov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. Wegener, “Switching functions whose monotone complexity is nearly quadratic,” Theor. Comput. Sci.,9, No. 1, 83–97 (1979).Google Scholar
  2. 2.
    I. Wegener, “A new lower bound on the monotone network complexity of Boolean sums,” Acta Inf.,13, 109–114 (1980).Google Scholar
  3. 3.
    I. Wegener, “Boolean functions whose monotone complexity is of size n2/log n,” Theor. Comput. Sci.,21, 213–224 (1982).Google Scholar
  4. 4.
    A. A. Razborov, “Lower bound on monotone complexity of some Boolean functions,” Dokl. Akad. Nauk SSSR,281, No. 4, 798–801 (1985).Google Scholar
  5. 5.
    P. Erdos and J. Spencer, Probabilistic Methods in Combinatorics [Russian translation], Mir, Moscow (1976).Google Scholar
  6. 6.
    J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum matching in bipartite graphs,” SIAM J. Comput.,2, 225–231 (1973).Google Scholar
  7. 7.
    V. R. Pratt, “The power of negative thinking in multiplying Boolean matrices,” SIAM J. Comput.,4, 326–330 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. A. Razborov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations