System, similar to a normal form

  • A. D. Bryuno


Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. D. Bryuno, “The normal form of differential equations,” Dokl. Akad. Nauk SSSR,157, No. 4, 1276–1279 (1964).Google Scholar
  2. 2.
    A. D. Bryuno, A Local Method of Nonlinear Analysis for Differential Equations [in Russian], Nauka, Moscow (1979).Google Scholar
  3. 3.
    A. D. Bryuno, “Normal form of real differential equations,” Mat. Zametki,18, No. 2, 227–241 (1975).Google Scholar
  4. 4.
    C. Chevalley, Théorie des Groupes de Lie. Tome II. Groupes Algébriques, Hermann, Paris (1951).Google Scholar
  5. 5.
    A. Borel, Linear Algebraic Groups, Benjamin, New York (1969).Google Scholar
  6. 6.
    E. B. Vinberg and A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups [in Russian], Nauka, Moscow (1988).Google Scholar
  7. 7.
    V. L. Popov, “The Jordan decomposition. 2,” in: Mathematical Encyclopedia, Vol. 2 [in Russian], Moscow (1979), pp. 421–423.Google Scholar
  8. 8.
    T. G. Strizhak, “Methods of normal forms in differential equations,” Preprint IED Akad. Nauk Ukr.SSR, No. 357, Kiev (1983).Google Scholar
  9. 9.
    T. G. Strizhak, An Asymptotic Normalization Method [in Russian], Vishcha Shkola, Kiev (1984).Google Scholar
  10. 10.
    G. R. Belitskii, “On the normal forms of local mappings,” Usp. Mat. Nauk,30, No. 1, 223 (1975).Google Scholar
  11. 11.
    G. R. Belitskii, “Normal forms in relation to the filtering action of a group,” Tr. Mosk. Mat. Obshch.,40, 3–46 (1979).Google Scholar
  12. 12.
    G. R. Belitskii, Normal Forms, Invariants, and Local Mappings [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  13. 13.
    V. P. Palamodov, “Deformations of Hopf manifolds and the Poincaré-Dulac theorem,” Funkts. Anal. Prilozhen.,17, No. 4, 7–16 (1983).Google Scholar
  14. 14.
    A. P. Sadovskii, “Normal forms of systems of differential equations with a nonzero linear part,” Differents. Uravn.,18, No. 5, 827–832 (1982).Google Scholar
  15. 15.
    V. I. Arnol'd and Yu. S. Il'yashenko, “Ordinary Differential Equations,” Sovrem. Probl. Mat., Itogi Nauki Tekh.,1, 7–149 (1985).Google Scholar
  16. 16.
    R. Cushman and J. A. Sanders, “Nilpotent normal forms and representation theory of sl(2, R),” in: Multiparameter Bifurcation Theory (Arcata, CA, 1985), Contemp. Math., No. 56, Am. Math. Soc., Providence, RI (1986), pp. 31–51.Google Scholar
  17. 17.
    A. D. Bryuno, “The normal form of a Hamiltonian system,” Usp. Mat. Nauk,43, No. 1, 23–56 (1988).Google Scholar
  18. 18.
    A. D. Bryuno, “On systems similar to normal form,” in: All-Union Conference on the Nonlinear Problems of Differential Equations and Mathematical Physics, Abstracts of Reports, Part I, Ternopol (1989), pp. 74–75.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. D. Bryuno
    • 1
  1. 1.M. V. Keldysh Institute of Applied MathematicsAcademy of Sciences of the USSRUSSR

Personalised recommendations