Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

p-adic L-function associated with an elliptic curve

  • 48 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    B. Mazur and H. P. Swinnerton-Dyer, “Arithmetic of Weil curves,” Invent. Math.,25, 1–61 (1974).

  2. 2.

    M. M. Vishik, “Non-Archimedean measures connected with Dirichlet series,” Mat. Sb.,99, No. 2, 248–260 (1976).

  3. 3.

    Yu. I. Manin, “Periods of parabolic forms and p-adic Hecke series,” Mat. Sb.,92, No. 3, 378–401, 503 (1973).

  4. 4.

    Y. Amice and J. Velu, “Distributions p-adiques associcées aux série de Hecke,” Journ. Arithmetiques, Bordeaux (1974).

  5. 5.

    A. Ogg, Modular Forms and Dirichlet Series, W. A. Benjamin, New York (1968).

  6. 6.

    Yu. I. Manin, “Parabolic points and zeta-functions of modular curves,” Izv. Akad. Nauk SSSR, Ser. Mat.,36, 19–66 (1972).

  7. 7.

    Yu. I. Manin, “Explicit formulas for the eigenvalues of Hecke operators,” Acta Arithmetica,24., 239–249 (1973).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 26, No. 2, pp. 277–284, August, 1979.

The author thanks Yu. I. Manin for guidance.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khoai, K.Z. p-adic L-function associated with an elliptic curve. Mathematical Notes of the Academy of Sciences of the USSR 26, 629–634 (1979). https://doi.org/10.1007/BF01157384

Download citation


  • Elliptic Curve