Advertisement

Certain extremal problem for nonnegative trigonometric polynomials

  • V. V. Arestov
  • V. P. Kondrat'ev
Article

Keywords

Extremal Problem Trigonometric Polynomial Nonnegative Trigonometric Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ch.-J. de la Vallée Poussin, “Sur la fonction ζ(s) de Riemann et le nombre des nombre premiers inférieurs à une limite donnée,” Mem. couron. et autres Mem. publ. par Acad. Roy. Sci. Lettres et Beaus-Arts de Belgique,59, No. 1, 1–74 (1899).Google Scholar
  2. 2.
    E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, Berlin (1909).Google Scholar
  3. 3.
    L. Tschakaloff, “Trigonometrische Polynomme mit einer Minimumeigenschaft,” Ann. Schola Norm. Super. Pisa, Ser. 2,9, 13–26 (1940).Google Scholar
  4. 4.
    B. L. van der Waerden, “Uber Landau's Rewies des Primzahlsatzes,” Mathematische Zeitschrift,52, 649–653 (1949).Google Scholar
  5. 5.
    S. French, “Trigonometric polynomials in prime number theory,” Ill. J. Math.,10, No. 2, 240–248 (1966).Google Scholar
  6. 6.
    S. B. Stechkin, “On some extremal properties of positive trigonometric polynomials,” Mat. Zametki,7, No. 4, 411–422 (1970).Google Scholar
  7. 7.
    J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers,” Ill. J. Math.,6, 64–94 (1962).Google Scholar
  8. 8.
    S. B. Stechkin, “On the zeros of the Riemann zeta-function,” Mat. Zametki,8, No. 4, 419–429 (1970).Google Scholar
  9. 9.
    J. B. Rosser and L. Schoenfeld, “Sharper bounds for the Chebyshev functions θ(x) and ψ(x),” Math. Comp.,29, No. 129, 243–269 (1975).Google Scholar
  10. 10.
    V. P. Kondrat'ev, “On some extremal properties of positive trigonometric polynomials,” Mat. Zametki,22, No. 3, 371–374 (1977).Google Scholar
  11. 11.
    A. V. Reztsov, “Some extremal properties of nonnegative trigonometric polynomials,” Mat. Zametki,39, No. 2, 245–252 (1986).Google Scholar
  12. 12.
    N. I. Chernykh, “On Jackson's inequality in L2,” Tr. Mat. Inst. Akad. Nauk SSSR,88, 71–74 (1967).Google Scholar
  13. 13.
    N. I. Chernykh, “On the best approximation of periodic functions by trigonometric polynomials in L2,” Mat. Zametki,2, No. 5, 513–522 (1967).Google Scholar
  14. 14.
    A. G. Babenko, “On a certain extremal problem for polynomials with a fixed mean value,” in: Approximation of Functions by Polynomials and Splines [in Russian], Ural'skii Nauchnyi Tsentr Akad. Nauk SSSR, Sverdlovsk (1985), pp. 15–22.Google Scholar
  15. 15.
    A. G. Babenko, “On the exact constant in Jackson's inequality in L2,” Mat. Zametki,39, No. 5, 651–664 (1986).Google Scholar
  16. 16.
    G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol. 2, Springer-Verlag, New York (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. V. Arestov
    • 1
  • V. P. Kondrat'ev
    • 1
  1. 1.Institute of Mathematics and Mechanics, Ural BranchAcademy of Sciences of the USSRUSSR

Personalised recommendations