Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A priori estimates of solutions of the Sturm-Liouville equation and the A. M. Molchanov criterion

  • 37 Accesses

  • 10 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. M. Molchanov, “On conditions for the discreteness of the spectrum of self-adjoint second-order differential equations,” Tr. Mosk. Mat. Obshch., Mosk. Gos. Univ.,2, 169–200 (1953).

  2. 2.

    M. O. Otelbaev, “On the smoothness of solutions of differential equations,” Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat., No. 5, 45–48 (1977).

  3. 3.

    N. A. Chernyavskaya and L. A. Shuster, “On the WKB method,” in: Mathematical Modeling in Physicotechnological Problems [in Russian], Prioks Book Publishing House, Tula (1988), pp. 43–46.

  4. 4.

    M. O. Otelbaev, “A kernel property criterion for the resolvent of a Sturm-Liouville operator,” Mat. Zametki,25, No. 4, 569–572 (1979).

  5. 5.

    Z. S. Grinshpun and M. O. Otelbaev, “On smoothness of the solution of a nonlinear Sturm-Liouville equation in L1(-∞, ∞),” Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat., No. 5, 26–29 (1984).

  6. 6.

    A. Zygmund, Trigonometrical Series, Monografje Matematyczne, Warsaw-Lwow (1935).

  7. 7.

    K. Yosida, Functional Analysis [Russian translation], Nauka, Moscow (1967).

  8. 8.

    H. H. Schaefer, “Interpolation of spectra,” in: Integral Equat. Oper. Theory,3, No. 3, 463–469 (1980).

Download references

Author information

Additional information

Translated from Matematicheskie Zametki, Vol. 50, No. 1, pp. 131–138, July, 1991.

In conclusion, the author wishes to thank A. A. Shkalikov for his interest in my work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shuster, L.A. A priori estimates of solutions of the Sturm-Liouville equation and the A. M. Molchanov criterion. Mathematical Notes of the Academy of Sciences of the USSR 50, 746–751 (1991). https://doi.org/10.1007/BF01156613

Download citation