Fourier-Maslov transform in the space of multivalued analytic functions

  • B. Yu. Sternin
  • V. E. Shatalov


Analytic Function Multivalued Analytic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. P. Maslov, Theory of Perturbations and Asymptotic Methods [in Russian], Mosk. Gos. Univ., Moscow (1965).Google Scholar
  2. 2.
    V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973).Google Scholar
  3. 3.
    V. P. Maslov, “The FourierA-transform,” Tr. Mosk. Inst. Elektr. Mashinostr., 55–99 (1972).Google Scholar
  4. 4.
    B. Yu. Sternin and V. E. Shatalov, “An integral transform of complex analytic functions,” Izv. Akad. Nauk SSSR., Ser. Mat.,50, No. 5, 1054–1076 (1986).Google Scholar
  5. 5.
    B. Yu. Sternin and V. E. Shatalov, “An integral representation and a transformation of complex analytic functions connected with it,” Dokl. Akad. Nauk SSSR,298, No. 1, 44–48 (1988).Google Scholar
  6. 6.
    B. Yu. Sternin and V. E. Shatalov, “Differential equations on complex-analytic manifolds and the canonical Maslov operator,” Usp. Mat. Nauk,43, No. 3, 97–124 (1988).Google Scholar
  7. 7.
    J. Leray, Differential and Integral Calculus on Complex-Analytic Manifolds [Russian translation], IL, Moscow (1965).Google Scholar
  8. 8.
    J. Leray, L. Garding, and T. Kotake, The Cauchy Problem [Russian translation], Mir, Moscow (1967).Google Scholar
  9. 9.
    F. Pham, Introduction to the Topological Study of Landau Singularities [Russian translation], Mir, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 1
  1. 1.Moscow Electronic Mechanical-Engineering InstituteUSSR

Personalised recommendations