Multi-phase solutions of the Benjamin-Ono equation and their averaging

  • S. Yu. Dobrokhotov
  • I. M. Krichever


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    T. B. Benjamin, “Internal waves of permanent form in fluids of great depth,” J. Fluid Mech.,29, 559–592 (1967).Google Scholar
  2. 2.
    V. I. Zhuk and O. S. Ryzhov, “On locally nonviscous perturbations in a boundary layer with a self-induced pressure,” Dokl. Akad. Nauk SSSR,263, No. 1, 56–59 (1982).Google Scholar
  3. 3.
    F. T. Smith and O. R. Burggraf, “On the development of large-sized short-scaled disturbances in boundary layers,” Proc. R. Soc.,339, No. 1816, 25–55 (1985).Google Scholar
  4. 4.
    J. Satsyma, M. J. Ablowitz, and Y. Kodama, “On the internal wave equation describing a stratified fluid with finite depth,” Phys. Lett.,73A, 283–286 (1979).Google Scholar
  5. 5.
    A. S. Fokas and M. J. Ablowitz, “The inverse scattering transform for the Benjamin-Ono equation — a pivot to multidimensional problems,” Stud. Appl. Math.,68, 1–10 (1983).Google Scholar
  6. 6.
    A. I. Bobenko, V. B. Matveev, and M. A. Sall', “Nonlocal Korteweg-de Vries and Kadomtsev-Petviashvili equations,” Dokl. Akad. Nauk SSSR,265, No. 6, 1357–1360 (1982).Google Scholar
  7. 7.
    M. J. Ablowitz and H. Segur, “Solitons and the inverse scattering transform,” SIAM, Philadelphia (1981).Google Scholar
  8. 8.
    J. Satsuma and A. Ishimory, “Periodic wave and rational soliton solutions of the Benjamin-Ono equation,” J. Phys. Soc. Jpn.,46, No. 2 (1979).Google Scholar
  9. 9.
    I. M. Krichever, “On rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles on the line,” Funkts. Anal. Prilozh.,12 No. 1, 76–78 (1978).Google Scholar
  10. 10.
    B. A. Dubrovin, T. G. Malanyuk, I. M. Krichever, and V. G. Makhan'kov, “Exact solutions of the nonstationary Shrödinger equation with self-consistent potentials,” Fiz. Elemen. Chast. At. Yad.,19, No. 3, 579–621 (1988).Google Scholar
  11. 11.
    S. Yu. Dobrokhotov and V. P. Maslov, “Finite-zone, almost periodic solutions in WKB-approximations,” Itogi Nauki Tekh., Sov. Prob.,15, 3–94, VINITI, Moscow (1980).Google Scholar
  12. 12.
    S. Yu. Dobrokhotov and V. P. Maslov, “Multi-phase asymptotics of nonlinear partial differential equations,” Sov. Sci. Rev. Math. Phys. Rev.3, 211–311, OPA, Amsterdam (1982).Google Scholar
  13. 13.
    H. Flashka, M. G. Forest, and D. W. McLaughlin, “Multiphase spectral solution of the Korteweg-de Vries equation,” Commun. Pure Appl. Math.,33, No. 6, 739–784 (1980).Google Scholar
  14. 14.
    I. M. Krichever, “Method of averaging two-dimensional ‘integrable’ equations,” Funkts. Anal. Prilozh.,22, No. 3, 37–52 (1988).Google Scholar
  15. 15.
    V. P. Malsov, “Turning the Heisenberg equation into the ideal gas equations by taking the limit h → 0, and quantization of relativistic hydrodynamics,” Trudy Mat. Fiz., No. 3, 378–383 (1969).Google Scholar
  16. 16.
    V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973).Google Scholar
  17. 17.
    S. Yu. Dobrokhotov, “Resonance correction to an adiabatically perturbed finite-zone, almost-periodic solution of the Korteweg-de Vries equation,” Mat. Zametki,44 No. 4, 551–554 (1988).Google Scholar
  18. 18.
    V. I. Arnol'd, V. V. Kozlov, and A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics,” in Modern Mathematical Problems, Fundamental Directions [in Russian], Vol. 3, VINITI, Moscow (1985).Google Scholar
  19. 19.
    M. V. Fedoryuk, The Saddle-Point Method [in Russian], Nauka, Moscow (1977).Google Scholar
  20. 20.
    R. Haberman, “The modulated phase shift for weakly dissipated non-linear oscillatory waves of the Korteweg-de Vries type,” Stud. Appl. Math.,78, 73–90 (1988).Google Scholar
  21. 21.
    Yu. M. Vorob'ev and S. Yu. Dobrokhotov, “Basis systems on the torus generated by finitezone integration of the Korteweg-de Vries equation,” Mat. Zametki,47, No. 1, 47–61 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • S. Yu. Dobrokhotov
    • 1
  • I. M. Krichever
    • 1
  1. 1.Institute for Problems of MechanicsLandau Institute of Theoretical PhysicsUSSR

Personalised recommendations