manuscripta mathematica

, Volume 12, Issue 3, pp 285–305 | Cite as

Torsion theories in non-additive categories

  • Basil A. Rattray


Number Theory Algebraic Geometry Topological Group Torsion Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BIRKHOFF, G.: The meaning of completeness. Ann. of Math.38, 57–60 (1937).Google Scholar
  2. [2]
    BARR, M.: Non-abelian torsion theories. Can.J.Math., XXV, 1224–1237 (1973).Google Scholar
  3. [3]
    FREYD, P.: Abelian Categories. Harper's, 1964.Google Scholar
  4. [4]
    ISBELL, J.R.: Subobjects, adequacy, completeness and categories of algebras. Rozprawy Mat.36, 1–33 (1964).Google Scholar
  5. [5]
    ISBELL, J.R.: Uniform spaces. Math.Surveys 12, Amer.Math.Soc., 1964.Google Scholar
  6. [6]
    KELLY, G.M.: Monomorphisms, epimorphisms and pullbacks. J.Austr.Math. Soc.9, 124–142 (1969).Google Scholar
  7. [7]
    KENNISON, J.: Full reflective subcategories and generalized covering spaces. Illinois J.Math.12, 353–365 (1968).Google Scholar
  8. [8]
    LAMBEK, J.: Torsion theories, additive semantics, and rings of quotients. Lecture Notes in Mathematics177, Springer Verlag 1971.Google Scholar
  9. [9]
    LAMBEK, J. and RATTRAY, B.A.: Localization at injectives in complete categories. Proc. Amer. Math. Soc.41, 1–9 (1973).Google Scholar
  10. [10]
    MITCHELL, B.: Theory of Categories. Academic Press 1965.Google Scholar
  11. [11]
    RINGEL, C.M.: Monofunctors as reflectors. Trans. Amer.Math.Soc.161, 293–306 (1971).Google Scholar
  12. [12]
    VERDIER, J.L.: Séminaire de géométrie algébrique, Fascicule 1, IHES, 1963–64.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Basil A. Rattray
    • 1
  1. 1.Dept.of MathematicsMcGill UniversityMontrealCanada

Personalised recommendations