Keywords
Number Theory Algebraic Geometry Topological Group Torsion Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]BIRKHOFF, G.: The meaning of completeness. Ann. of Math.38, 57–60 (1937).Google Scholar
- [2]BARR, M.: Non-abelian torsion theories. Can.J.Math., XXV, 1224–1237 (1973).Google Scholar
- [3]FREYD, P.: Abelian Categories. Harper's, 1964.Google Scholar
- [4]ISBELL, J.R.: Subobjects, adequacy, completeness and categories of algebras. Rozprawy Mat.36, 1–33 (1964).Google Scholar
- [5]ISBELL, J.R.: Uniform spaces. Math.Surveys 12, Amer.Math.Soc., 1964.Google Scholar
- [6]KELLY, G.M.: Monomorphisms, epimorphisms and pullbacks. J.Austr.Math. Soc.9, 124–142 (1969).Google Scholar
- [7]KENNISON, J.: Full reflective subcategories and generalized covering spaces. Illinois J.Math.12, 353–365 (1968).Google Scholar
- [8]LAMBEK, J.: Torsion theories, additive semantics, and rings of quotients. Lecture Notes in Mathematics177, Springer Verlag 1971.Google Scholar
- [9]LAMBEK, J. and RATTRAY, B.A.: Localization at injectives in complete categories. Proc. Amer. Math. Soc.41, 1–9 (1973).Google Scholar
- [10]MITCHELL, B.: Theory of Categories. Academic Press 1965.Google Scholar
- [11]RINGEL, C.M.: Monofunctors as reflectors. Trans. Amer.Math.Soc.161, 293–306 (1971).Google Scholar
- [12]VERDIER, J.L.: Séminaire de géométrie algébrique, Fascicule 1, IHES, 1963–64.Google Scholar
Copyright information
© Springer-Verlag 1974