Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths

Abstract

A computer simulation model of fragment distribution with respect to the fibre strength in a single-filament composite test is developed using the bimodal Weibull statistics. The predictions of the theory are examined with experimental results for AU carbon fibres coated by zirconium-n-propoxide or a zircoaluminate complex. Weibull analysis reveals a bimodal distribution of fibre strengths, in which the fractions of low- and high-strength populations vary with gauge length. It is seen that the simulation results are in good agreement with experimental data if the best fit model of strength distribution is applied. Thus, the use of a bimodal distribution term in the simulation theory yields a predicted strength at the critical length which is in good agreement with the results of extrapolation of experimental data, while the unimodal distribution term leads to overestimation of the strength.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Narkis, E. J. H. Chen andR. B. Pipes,Polym. Compos. 9 (1988) 245.

  2. 2.

    A. Kelly andN. R. Tyson,J. Mech. Phys. Solids 13 (1965) 329.

  3. 3.

    L. T. Drzal, M. J. Rich andP. F. Lloyd,J. Adhes. 16 (1982) 1.

  4. 4.

    A. S. Crasto, S. H. Own andR. V. Subramanian,Polym. Compos. 9 (1988) 78.

  5. 5.

    A. N. Netravali, R. B. Henstenburg, S. L. Phoenix andP. Schwartz,ibid. 10 (1989) 226.

  6. 6.

    W. D. Bascom andR. M. Jensen,J. Adhes. 19 (1986) 219.

  7. 7.

    J. D. H. Hughes,J. Phys. D Appl. Phys. 20 (1987) 276.

  8. 8.

    R. B. Henstenburg andS. L. Phoenix,Polym. Compos. 10 (1989) 389.

  9. 9.

    W. A. Fraser, F. H. Ancker, A. T. Dibenedetto andB. Elbirli,ibid. 4 (1983) 238.

  10. 10.

    W. A. Curtin,J. Mater. Sci. 26 (1991) 5239.

  11. 11.

    D. J. Johnson,J. Phys. D Appl. Phys. 20 (1987) 386.

  12. 12.

    J. W. Hitchon andD. C. Phillips,Fibre Sci. Technol. 12 (1979) 217.

  13. 13.

    S. C. Bennett, D. J. Johnson andW. Johnson,J. Mater. Sci. 18 (1983) 3337.

  14. 14.

    S. H. Own, R. V. Subramanian andS. C. Saunders,ibid. 21 (1986) 3912.

  15. 15.

    K. Goda andH. Fukunada,ibid. 21 (1986) 4475.

  16. 16.

    C. P. Beetz Jr,Fibre Sci. Technol. 16 (1982) 45.

  17. 17.

    R. V. Subramanian andE. A. Nyberg,J. Mater. Res. 7 (1992) 677.

  18. 18.

    W. Weibull,J. Appl. Mech. 18 (1951) 293.

  19. 19.

    S. N. Patenkar,J. Mater. Sci. Lett. 10 (1991) 1176.

  20. 20.

    J. B. Donnet andR. C. Bansal, “Carbon Fibres” (Marcel Dekker, New York, 1990) p. 289.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, T., Subramanian, R.V. & Manoranjan, V.S. Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths. J Mater Sci 28, 4489–4496 (1993). https://doi.org/10.1007/BF01154961

Download citation

Keywords

  • Computer Simulation Model
  • Computer Simulation
  • Carbon Fibre
  • Gauge Length
  • Bimodal Distribution