Advertisement

Journal of Materials Science

, Volume 23, Issue 4, pp 1474–1480 | Cite as

Study of the interaction of two hexagonal neodymium oxides with atmospheric CO2 and H2O

  • S. Bernal
  • F. J. Botana
  • R. García
  • J. M. Rodríguez-Izquierdo
Article

Abstract

The present work deals with the behaviour in air of two neodymia samples prepared by calcination of a hydroxynitrate phase at 1020 and 1310 K, respectively. Both oxides behave similarly so that after approximately 50 days of air exposure, at normal temperature and pressure, they are thoroughly transformed into hydroxide. When stabilization is reached the two aged samples are also carbonated in the bulk; evidence for this latter process, which is much less intense than the hydration reaction, cannot be obtained from X-ray diffraction studies. These findings indicate the existence of close analogies between the oxides investigated here and several hexagonal lanthana and monoclinic samaria samples studied earlier, which supports the classification of the rare earth oxides based on their behaviour with atmospheric CO2 and H2O, as recently proposed by us. The additional experiments of carbonation reported here suggest that the ageing in air of the hexagonal neodymium oxides leads to the formation of a hydroxycarbonate-like phase, which does not agree with the crystalline ancylite-type hydroxycarbonate, formed when these oxides are suspended in water.

Keywords

Hexagonal Rare Earth Calcination Lanthana Diffraction Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bernal, R. Garcia, J. M. Lopez andJ. M. Rodriguez-Izquierdo,Collect. Czech. Chem. Commun. 48 (1983) 2205.Google Scholar
  2. 2.
    S. Bernal, F. J. Botana, R. Garcia andJ. M. Rodriguez-Izquierdo,Thermochim. Acta 66 (1983) 139.Google Scholar
  3. 3.
    R. Alvero, J. A. Odriozola, J. M. Trillo andS. Bernal,J. Chem. Soc. Dalton Trans. (1984) 87.Google Scholar
  4. 4.
    S. Bernal, J. A. Diaz, R. Garcia andJ. M. Rodriguez-Izquierdo,J. Mater. Sci. 20 (1985) 537.Google Scholar
  5. 5.
    S. Bernal, F. J. Botana, J. Pintado, R. Garcia andJ. M. Rodriguez-Izquierdo,J. Less-Common Metal 110 (1985) 433.Google Scholar
  6. 6.
    Idem, Mater. Res. Bull. 22 (1987) 131.Google Scholar
  7. 7.
    S. Bernal, F. J. Botana, R. Garcia andJ. M. Rodriguez-Izquierdo,Mater. Lett., in press.Google Scholar
  8. 8.
    S. Bernal, F. J. Botana, R. Garcia andJ. M. Rodriguez-Izquierdo,Reactiv. Solids 4 (1987) 23.Google Scholar
  9. 9.
    G. Tonsum andH. F. Rase,I & EC Prod. Res. Develop. 11 (1972) 249.Google Scholar
  10. 10.
    E. K. Poels, E. H. Van Broekhoven, W. A. A. Van Barneveld andV. Ponec,React. Kinet. Catal. Lett. 18 (1981) 223.Google Scholar
  11. 11.
    R. P. Underwood andA. T. Bell,Appl. Catal. 21 (1986) 157.Google Scholar
  12. 12.
    H. T. Fullam andF. P. Roberts, BNWL-1421, Batelle-Northwest, Richland, Washington (1970).Google Scholar
  13. 13.
    A. F. Moskvicheva, G. D. Beregovaya andB. N. Rybakov,Russ. J. Inorg. Chem. 16 (1971) 475.Google Scholar
  14. 14.
    R. Tueta andA. M. Lejus,Rev. Chim. Min. 10 (1973) 105.Google Scholar
  15. 15.
    A. M. Stacy, J. V. Badding, M. J. Geselbracht, W. K. Haw, G. F. Holland, R. L. Hoskins, S. W. Keller, C. F. Millikan andH. C. Lope,J. Amer. Chem. Soc. 109 (1987) 2528.Google Scholar
  16. 16.
    D. Touret andF. Queyroux,Rev. Chim. Min. 9 (1972) 883.Google Scholar
  17. 17.
    M. P. Rosynek,Catal. Rev. 16 (1977) 111.Google Scholar
  18. 18.
    R. Alvero, A. Bernal, I. Carrizosa, A. Justo, J. A. Odriozola andJ. M. Trillo,J. Less-Common Metals 112 (1985) 347.Google Scholar
  19. 19.
    R. Alvero, J. A. Odriozola andJ. M. Trillo,J. Mater. Sci. 20 (1985) 1828.Google Scholar
  20. 20.
    M. P. Rosynek andD. T. Magnuson,J. Catal. 46 (1977) 402.Google Scholar
  21. 21.
    M. P. Rosynek andD. T. Magnuson,J. Catal. 46 (1977) 417.Google Scholar
  22. 22.
    H. Dexpert, E. Antic-Fidancev, J. P. Coutures andP. Caro,J. Crystallogr. Spectrosc. Res. 12 (1982) 129.Google Scholar
  23. 23.
    N. V. Zubova, V. N. Makarov, V. D. Nikolskii, P. N. Petrov, E. G. Teterin andN. T. Chebotarev,Russ. J. Inorg. Chem. 13 (1968) 7.Google Scholar
  24. 24.
    B. I. Swanson, C. Machell, G. W. Beall andW. O. Milligan,J. Inorg. Nucl. Chem. 40 (1978) 694.Google Scholar
  25. 25.
    P. Caro andM. Lemaitre-Blaise,C. R. Acad. Sci. Paris Ser. C 269 (1969) 687.Google Scholar
  26. 26.
    J. A. K. Warren, M. N. Viswanatiah andK. V. Krishnamurthy,Rev. Chim. Min. 17 (1980) 50.Google Scholar
  27. 27.
    S. Bernal, F. J. Botana, R. Garcia, F. Ramirez andJ. M. Rodriguez-Izquierdo,J. Mater. Sci. 22 (1987) 3785.Google Scholar
  28. 28.
    B. E. Warren, “X-Ray Diffraction” (Addison-Wesley, 1969).Google Scholar
  29. 29.
    F. J. Botana, Doctoral Thesis, University of Cadiz (1987).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • S. Bernal
    • 1
  • F. J. Botana
    • 1
  • R. García
    • 1
  • J. M. Rodríguez-Izquierdo
    • 1
  1. 1.Departamento de Química Inorgánica, Facultad de CienciasUniversidad de CádizCádizSpain

Personalised recommendations