Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Magnetic resonance characterization of solid-state intermediates in the generation of ceramics by pyrolysis of hydridopolysilazane

  • 54 Accesses

  • 19 Citations

Abstract

Chemical intermediates produced from the pyrolysis of hydridopolysilazane (HPZ) were studied in the solid state by multinuclear nuclear magnetic resonance and electron spin resonance. When pyrolysed at temperatures of 1200°C, uncured HPZ forms a ceramic material with a composition of Si2.2N2.2C1.0. A series of HPZ-derived ceramics was produced using a number of different heat-treatment temperatures, varying between 300 and 1200°C. Solid-state magnetic resonance data generated from this set of HPZ-derived ceramics elucidate important features of this complex transformation. Silicon atoms initially exist in two types of sites in the polymer,

Si(Me)3 and (

)3SiH sites. Upon pyrolysis between 300 and 400°C, the silazane cyclizes and cross-links, forming an intractable, insoluble solid. Increasing the pyrolysis temperature to between 400 and 600°C creates a matrix that is partially inorganic; at heat-treatment temperatures in this range, many of the C-H bonds of the starting polymer are cleaved. Elevating the heat-treatment temperature to between 600 and 1200°C generates a series of chemical structures with silicon in a tetrahedral site of the general form SiN4−xCx, where x=0, 1, 2, 3, 4. No crystalline forms of Si3N4 or SiC were detected in the material prepared at even the highest heat-treatment temperature of 1200 °C.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Seyferth, G. H. Wiseman andC. Prud'homme,J. Am. Ceram. Soc. 66 (1983) C13.

  2. 2.

    D. Seyferth andG. H. Wiseman,Am. Chem. Soc. Polym. Div. Polym. Prepr. 27 (1987) 407.

  3. 3.

    H. R. Allcock andF. W. Lampe, “Contemporary Polymer Chemistry” (Prentice Hall, Englewood Cliffs, NJ, 1990).

  4. 4.

    K. A. Youngdahl, R. M. Laine, R. A. Kennish, T. R. Cronin andG. G. A. Belavoine,Mater. Res. Soc. Symp. Proc. 121 (1988) 489.

  5. 5.

    R. Wills, R. A. Markle andS. P. Mukherjee,Ceram. Bull. 62 (1988) 905.

  6. 6.

    G. E. Legrow, T. F. Lim, J. Lipowitz andR. S. Reaoch,ibid. 66 (1987) 363.

  7. 7.

    J. P. Cannady, US Pat. 4540803.

  8. 8.

    Idem., US Pat. 453 5007.

  9. 9.

    G. R. Hatfield andK. R. Carduner,J. Mater. Sci. 24 (1989) 4209.

  10. 10.

    G. T. Burns, J. A. Ewald andK. Mukherjee,ibid. 27 (1992) 3599.

  11. 11.

    K. Su, E. E. Remsen, G. A. Zank andL. G. Sneddon, Chem. Mater.5 (1993) 547.

  12. 12.

    H.-P. Baldus, W. Schick andJ. Lücke,Chem. Mater. 5 (1993) 845.

  13. 13.

    T. N. Mitchell andR. Wickenkamp,J. Orgmet. Chem. 291 (1985) 179.

  14. 14.

    B. Wrackmeyer andH. Zhou,Spectrochim. Acta 47A (1991) 849.

  15. 15.

    M. Zhang andG. E. Maciel,Anal. Chem. 62 (1990) 633.

  16. 16.

    G. E. Maciel, C. E. Bronnimann andB. L. Hawkins,Adv. Magn. Reson. 14 (1990) 125.

  17. 17.

    D. P. Burum andW. K. Rhim,J. Chem. Phys. 71 (1979) 944.

  18. 18.

    L. B. Alemany, D. M. Grant, T. D. Alger andR. J. Pugmire,J. Am. Chem. Soc. 105 (1983) 6697.

  19. 19.

    T. Fjeldberg,J. Molec. Struct. 112 (1984) 159.

  20. 20.

    R. K. Harris andB. J. Kimber,J. Magn. Reson. 17 (1975) 174.

  21. 21.

    D. W. Duff andG. E. Maciel,Macromolecules 23 (1990) 4367.

  22. 22.

    Idem, ibid. 24 (1991) 651.

  23. 23.

    H. Janke, G. Engelhardt, M. Magi andE. Lippma,Z. Chem. 13 (1973) 435.

  24. 24.

    I. Chuang, D. R. Kinney, C. E. Bronnimann, R. C. Zeigler andG. E. Maciel,J. Phys. Chem. 96 (1992) 4028.

  25. 25.

    E. Kupce, E. Lukevics, Y. M. Varezhkin, A. N. Mikhailova andV. D. Sheludyakov,Orgmet. 7 (1988) 1649.

  26. 26.

    R. R. Wills, R. A. Markle andS. P. Mukherjee,Ceram. Bull. 62 (1983) 904.

  27. 27.

    R. M. Laine, Y. D. Blum, D. Tse andR. Glaser, “ACS Symposium Series”, Vol. 36 (American Chemical Society, Washington, DC, 1988) Chs 10-13.

  28. 28.

    T. S. Hartman, M. F. Richardson, B. L. Sherriff andB. C. Winsborrow,J. Am. Chem. Soc. 109 (1987) 6059.

  29. 29.

    G. W. Wagoner, B-K. Na andM. A. Varnuce,J. Phys. Chem. 93 (1989) 5061.

  30. 30.

    J. R. Guth andW. T. Petusky,J. Phys. Chem. 91 (1987) 5361.

  31. 31.

    C. Gerardin, F. Tavlelle andJ. Livage,J. Chim. Phys. 89 (1992) 461.

  32. 32.

    K. R. Carduner, R. O. Carter III, M. E. Milberg andG. M. Crosbie,Anal. Chem. 59 (1987) 2794.

  33. 33.

    A. C. Olivieri andG. R. Hatfield,J. Magn. Reson. 94 (1991) 535.

  34. 34.

    R. K. Harris andM. J. Leach,Chem. Mater. 2 (1990) 320.

  35. 35.

    G. Wagoner,Phys. Rev. 118 (1960) 647.

  36. 36.

    S. Mrozowski,Low. Temp. Phys. 35 (1979) 231.

  37. 37.

    Idem, Carbon 26 (1988) 521.

  38. 38.

    K. Kinoshita, “Carbon Electrochemical and Physicochemical Properties” (Wiley, New York, 1988) Ch. 8.

  39. 39.

    T. Shimizu, M. Kumeda andY. Kiriyama,Solid State Commun. 37 (1981) 699.

  40. 40.

    A. Morimoto, T. Miura, M. Kumeda andT. Shimuizu,Jpn J. Appl. Phys. 21 (1982) L119.

  41. 41.

    S. Dey, D. R. Torgeson andR. G. Bamis,Appl. Phys. Lett. 49 (1986) 17.

  42. 42.

    G. K. Walters andT. L. Estle,J. Appl. Phys. 32 (1961) 1854.

  43. 43.

    T. Shimizu,J. Non-Cryst. Solids 71 (1985) 145.

  44. 44.

    Idem, ibid. 59 (1983) 117.

  45. 45.

    J. S. Thorp andT. G. Bushell,J. Mater. Sci. Lett. 5 (1986) 1013.

  46. 46.

    F. J. Dyson,Phys. Rev. 98 (1955) 349.

  47. 47.

    G. Feher andA. F. Kip,ibid. 98 (1955) 337.

  48. 48.

    J. M. Zeigler andF. W. Gordon Fearson, “Silicon Based Polymer Science: A Comprehensive Resource”, Advances in Chem. Series 224 (American Chemical Society, Washington, D.C, 1990) Ch. 10.

  49. 49.

    K. A. Andionov, V. V. Yastrebov, A. I. Chevnyshev, V. M. Koplylov andL. M. Khananashvili,Zh. Obshch. Khim. 34 (1969) 2513.

  50. 50.

    B. Rozondai, I. Hargittor, A. V. Golubinskii, L. V. Vilkov andV. S. Mastryukov,J. Molec. Struct. 28 (1975) 339.

  51. 51.

    J. G. Hexem, M. H. Frey andS. J. Opella,J. Chem. Phys. 77 (1982) 3847.

  52. 52.

    M. Mehring, “Principles at High Resolution NMR in Solids”, 2nd Edn (Springer, New York, 1983) pp. 80–3.

Download references

Author information

Correspondence to G. E. Maciel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lewis, R.H., Maciel, G.E. Magnetic resonance characterization of solid-state intermediates in the generation of ceramics by pyrolysis of hydridopolysilazane. J Mater Sci 30, 5020–5030 (1995). https://doi.org/10.1007/BF01154517

Download citation

Keywords

  • Silicon
  • Nuclear Magnetic Resonance
  • Pyrolysis
  • Electron Spin Resonance
  • Electron Spin