Journal of Materials Science

, Volume 30, Issue 19, pp 4912–4925

Remelting phenomena in the process of splat solidification

  • B. Kang
  • J. Waldvogel
  • D. Poulikakos
Article

Abstract

A combined theoretical and experimental study is reported which investigates remelting phenomena during the splat cooling of two liquid-metal droplets impacting sequentially on a substrate. Under conditions of sufficiently high superheat it was proposed theoretically and demonstrated experimentally that an initial deposit is remelted by the subsequent impact of molten material. It is shown that the amount of superheat as well as the variation of thermophysical properties, particularly the latent heat and the melting temperature, influence the degree of remelting. Experimental findings supported to a certain extent the theoretical model assumptions that the splats could be represented by thin discs and that the heat transfer and solidification within the splat propagates in the axial direction only. However, the experiments showed that these assumptions are better suited for the central region of the splat. The occurrence of remelting often depended on the radial location for a given amount of superheat. For most part, the splat exhibited globular microstructure. Lamellar structures were observed near the top and the periphery of the splat, indicating slower cooling rates at these locations. The theoretical model constituted a good compromise between accuracy and simplicity and predicted the correct trends of the remelting phenomenon.

Nomenclature

c

Specific heat (J kg−1 K−1)

d

Diameter of a spherical droplet (mm)

D

Diameter of the splat (mm)

ha

Convective heat-transfer coefficient (W m−2K−1)

hc

Contact heat-transfer coefficient (Wm−2K−1)

H

Height of the splat (mm)

I

Number of nodes in the axial direction in a splat

k

Thermal conductivity (W m−1 K−1)

Kf

Freezing kinetics coefficient (m s−1K−1)

L

Latent heat (J kg−1)

M

Number of nodes in the radial direction in a substrate

N

Number of nodes in the axial direction in a substrate

r

Radial coordinate (mm)

R

Radius of a splat (mm)

Δr

Increment of radial coordinate (mm)

t

Time (s)

t′

Time lapsed since the solidification of the bottom splat starts

T

Temperature (°C)

Tf

Equilibrium freezing temperature (°C)

T0

Initial temperature of the top splat (°C)

T

Initial temperature of the substrate or ambient air temperature (°C)

V

Interface velocity (m s−1)

z

Axial coordinate (mm)

Δz

Increment of axial coordinate (mm)

ξ

Spread factor

ϱ

Density (kg m−3)

Superscripts

l

Liquid

m

Index taking on the values s for solid or l for liquid

s

Solid

Subscripts

b

Bottom of control volume containing the freezing interface

i

Interface

j

Index taking on the values 1 for the first (bottom) splat or 2 for the second (top) splat

sup

Amount of superheat of the second splat

t

Top of control volume containing the freezing interface

1

First splat

2

Second splat

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Jones, “Rapid solidification of metals and alloys”, Monograph 8 (Institution of Metallurgists, London, 1982).Google Scholar
  2. 2.
    E. Gutierrez-Miravete, PhD thesis, Massachusetts Institute of Technology (1985).Google Scholar
  3. 3.
    S. Annavarapu, D. Apelian andA. Lawley,Metall. Trans. 21A (1990) 3237.Google Scholar
  4. 4.
    R. H. Bricknell,ibid. 7A (1986) 583.Google Scholar
  5. 5.
    R. G. Brooks, C. Moore, A. G. Leatham andJ. S. Coombs,Powder Metall. 2 (1977) 100.Google Scholar
  6. 6.
    T. R. Anantharaman andC. Suryanarayana,J. Mater. Sci. 6 (1971) 1111.Google Scholar
  7. 7.
    P. Predecki, A. W. Mullendore andN. G. Grant,Trans. Metall. Soc. AIME 233 (1965) 1581.Google Scholar
  8. 8.
    W. E. Brower, Jr,R. Strachan andM. C. Flemings,AFS Cast Metals Res. J. 6 (1970) 176.Google Scholar
  9. 9.
    M. G. Scott,J. Mater. Sci. 9 (1974) 1372.Google Scholar
  10. 10.
    G.-X. Wang andE. F. Matthys,Int. J. Rapid Solid. 6 (1991) 141.Google Scholar
  11. 11.
    Idem, Int. J. Heat Mass Transfer 35 (1992) 141.Google Scholar
  12. 12.
    P. H. Shingu andR. Ozaki,Metall. Trans. 6A (1975) 33.Google Scholar
  13. 13.
    D. E. Rosnar andM. Epstein,Chem. Eng. Sci. 30 (1975) 511.Google Scholar
  14. 14.
    P. V. Evans andA. L. Greer,Mater. Sci. Eng. 98 (1988) 357.Google Scholar
  15. 15.
    T. Bennett andD. Poulikakos,J. Mater. Sci. 29 (1994) 2025.Google Scholar
  16. 16.
    B. Kang, Z. Zhao andD. Poulikakos,J. Heat Transfer 116 (1994) 436.Google Scholar
  17. 17.
    J. Madejski,Int. J. Heat Mass Transfer 19 (1976) 1009.Google Scholar
  18. 18.
    Idem, ibid. 26 (1983) 1095.Google Scholar
  19. 19.
    C. G. Levi andR. Mehrabian,Metall. Trans. 13A (1982) 221.Google Scholar
  20. 20.
    T. W. Clyne,ibid. 15B (1984) 369.Google Scholar
  21. 21.
    S. V. Patankar, “Numerical heat transfer and fluid flow” (Hemisphere, New York 1981).Google Scholar
  22. 22.
    D. A. Anderson, J. C. Tannehill andR. H. Pletcher, “Computational fluid mechanics and heat transfer” (Hemisphere, New York, 1984).Google Scholar
  23. 23.
    L. E. Goodrich,Int. J. Heat Mass Transfer 21 (1978) 615.Google Scholar
  24. 24.
    W. Ranz andW. Marshall,Chem. Eng. Progr. 48 (1952) 141.Google Scholar
  25. 25.
    ASM Metals Handbook, Vol. 9 “Metallography and microstructures”, 9th Edn (American Society for Metals, Metals Park, OH, 1979).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • B. Kang
    • 1
  • J. Waldvogel
    • 1
  • D. Poulikakos
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations