Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of carbon sources on the combustion synthesis of TiC

  • 115 Accesses

  • 21 Citations

Abstract

The effect of carbon sources, i.e. graphite and amorphous carbon, on the reaction mechanism, product morphology, and the rate of combustion reaction between Ti and C to form TiC were studied. A reaction mechanism was proposed for each carbon source from the activation energy of combustion reaction. The microstructure and the composition of reaction products were also investigated. It was observed that graphite fissured in a layered form during the combustion reaction and the reaction between graphite and liquid titanium was accomplished mainly on the surface of the thinly fissured layer. Graphite was found to be more reactive with titanium and titanium carbide synthesized with graphite contains less amount of unreacted carbon and is more close to the stoichiometric TiC.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. B. Holt andZ. A. Munir,J. Mater. Sci.,21 (1986) 251.

  2. 2.

    K. S. Vecchio, J. C. Lasalvia, M. A. Meyers andG. T. Gray III,Metall. Trans. A 23A (1992) 87.

  3. 3.

    J. B. Holt, D. D. Kingman andG. M. Bianchini,Mater. Sci. Eng. 71 (1985) 321.

  4. 4.

    T. Kottke, L. J. Kecskes andA. Niiler,AIChE J. 36 (1990) 1581.

  5. 5.

    M. E. Grami andZ. A. Munir,J. Amer. Ceram. Soc. 73 (1990) 1235.

  6. 6.

    Y. Miyamoto,Ceram. Bull. 69 (1990) 686.

  7. 7.

    S. D. Dunmead, Z. A. Munir, J. B. Holt andD. D. Kingman,J. Mater. Sci. 26 (1991) 2410.

  8. 8.

    V. I. Itin, A. D. Bratchikov, A. G. Merzhanov andV. M. Maslov,Combust. Explos. Shock Waves (Engl. Transl.)17 (1981) 293.

  9. 9.

    K. A. Gabriel, S. G. Wax andJ. W. McClauley, in Proceedings of the DARPA/Army Symposium on Self-Propagating High-Temperature Synthesis, Daytona Beach, (Watertown, MA, 1985) p. 105.

  10. 10.

    S. Adachi, T. Wada, T. Mihara, Y. Miyamoto andM. Koizumi,J. Amer. Ceram. Soc. 73 (1990) 1451.

  11. 11.

    B. H. Rabin, G. E. Korth andR. L. Williamson,ibid. 73 (1990) 2156.

  12. 12.

    O. Odawara,ibid. 73 (1990) 629.

  13. 13.

    A. G. Merzhanov andB. I. Khaikin,Prog. Energy Combust. Sci. 14 (1988) 1.

  14. 14.

    A. A. Zenin,Pure Appl. Chem. 62 (1990) 889.

  15. 15.

    W. L. Frankhouser, K. W. Brendley, M. C. Kieszek andS. T. Sullivan, “Gasless combustion synthesis of refractory compounds” (Noyes Publications, Park Ridge, New Jersey, USA, 1985) p. 5.

  16. 16.

    E. K. Storms, “The refractory carbides” (Academic Press, New York, 1967) p. 1.

  17. 17.

    R. J. Kerans, K. S. Mazdiyasni, R. Ruh andH. A. Lipsitt,J. Amer. Ceram. Soc. 67 (1984) 34.

  18. 18.

    S. G. Vadchenko, Y. M. Grigor'ev andA. G. Merzhanov,Combust. Explos. Shock Waves (Engl. Transl.)12 (1976) 606.

  19. 19.

    M. A. Korchagin andV. V. Aleksandrov,ibid. 17 (1981) 58.

  20. 20.

    K. A. Gabriel, S. G. Wax, andJ. W. McClauley, in Proceedings of the DARPA/Army Symposium on Self-Propagating High-Temperature Synthesis, Daytona Beach, (Watertown, MA, 1985) p. 403.

  21. 21.

    A. S. Rogachev, A. S. Mukasy'an andA. G. Merzhanov,Dokl. Phys. Chem. 297 (1987) 1240.

  22. 22.

    J. Wong, E. M. Larson, J. B. Holt, P. A. Waide, B. Rupp andR. Frahm,Science 249 (1990) 1406.

  23. 23.

    Y. Choi andS. Rhee,J. Mater. Sci. 28 (1993) 6669.

  24. 24.

    Idem., J. Mater. Res. 8 (1993) 3202.

  25. 25.

    Idem., J. Mater. Sci. Lett. 13 (1994) 323.

  26. 26.

    I. Barin, F. Sauert, E. Schultze-Rhonhof andW. S. Sheng, “Thermochemical data of pure substances” (VCH, New York, 1989) p. 1528.

  27. 27.

    B. I. Khaikin andA. G. Merzhanov,Combust. Explos. Shock Waves (Engl. Transl.)2 (1966) 22.

  28. 28.

    S. D. Dunmead, Z. A. Munir andJ. B. Holt,J. Amer. Ceram. Soc. 75 (1992) 175.

  29. 29.

    Idem., ibid. 75 (1992) 180.

  30. 30.

    K. Kinoshita, “Carbon” (John Wiley and Sons, New York, 1988) p. 23.

  31. 31.

    A. I. Kirdyashkin, Yu. M. Maksimov andE. A. Nekrasov,Combust. Explos. Shock Waves (Engl. Transl.)17 (1981) 377.

  32. 32.

    S. D. Dunmead, D. W. Readey, C. E. Semler andI. B. Holt,J. Amer. Ceram. Soc. 72 (1989) 2318.

  33. 33.

    S. Sarin,J. Appl. Phys. 39 (1968) 3305.

  34. 34.

    Idem., ibid. 39 (1968) 5036.

  35. 35.

    D. L. Kohlstedt, W. S. Williams andJ. B. Woodhouse,ibid. 41 (1970) 4476.

  36. 36.

    L. Adelsberg andL. Cadoff,Trans. AIME. 24 (1967) 933.

  37. 37.

    C. J. Quinn andD. L. Kohlstedt,J. Amer. Ceram. Soc. 67 (1984) 305.

  38. 38.

    S. Sarin,J. Appl. Phys. 40 (1969) 3515.

  39. 39.

    R. W. Rice andW. J. McDonough,J. Amer. Ceram. Soc. 68 (1985) c122.

  40. 40.

    H. Schmalzried, “Solid State Reactions”, 2nd edn (Verlag Chemie, Weinheim, Deerfield Beach, FL 1981) p. 116.

  41. 41.

    L. C. Dufour, C. Monty andG. P. Ervas, “Surfaces and interfaces of ceramic materials” (Kluwer Academic Publishers, Dordrecht, Boston, and London, 1988) p. 173.

  42. 42.

    C. T. Lynch, “CRC Handbook of materials science, Vol. I, General Properties” (CRC Press, Inc., Boca Raton, Florida, 1974) p. 109.

  43. 43.

    J. S. Reed, “Introduction to the principles of ceramic processing” (John Wiley and Sons, New York, 1989) p. 24.

  44. 44.

    A. Oya andS. Otani,Carbon 17 (1979) 131.

  45. 45.

    K. Kinoshita, “Carbon” (John Wiley and Sons, New York, 1988) p. 13.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, Y., Rhee, S. Effect of carbon sources on the combustion synthesis of TiC. J Mater Sci 30, 4637–4644 (1995). https://doi.org/10.1007/BF01153073

Download citation

Keywords

  • Polymer
  • Microstructure
  • Combustion
  • Titanium
  • Graphite