Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fabrication, structure and properties of quasi-carbon fibres

  • 62 Accesses

  • 17 Citations

Abstract

Partially carbonized fibres, termed quasi-carbon fibres (QCF), with good thermal stability and acceptable mechanical properties were developed from a polyacrylonitrile-based precursor. Heat treatment temperature (HTT), in the 400–950 °C range, played a major role in determining the thermal, mechanical and electrical properties of the QCF. The thermal stability of the QCF was increased by increasing the HTT. An appreciable amount of the graphite-like structure in QCF began to develop at ca. 650 °C. The Young modulus magnitudes of QCF scaled almost linearly with the pyrolysis temperature. In contrast, the QCF exhibited a decreasing trend in both tensile strength and failure strain up to a HTT of 650 °C, above which both the tensile strength and failure strain of the QCF increased with the HTT. Electrical resistivity values of the QCF covered a very wide range from 107to 10−2 Ω cm. QCF showed semiconducting behaviours with activation energies falling between 0.690 and 0.0052 eV when the pyrolysis temperature was in the 400–850 °C range.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. K. Gupta, D. K. Paliwal andP. Bajaj,J. Mater. Sci. — Rev. Macromol. Chem. Phys. C31 (1991) 1.

  2. 2.

    S. Damodaran, P. Desai andA. S. Abhiraman,J. Text. Inst. 81 (1990) 384.

  3. 3.

    G. Henrici-Olivè andS. Olivè,Adv. Polymer Sci. 51 (1983) 1.

  4. 4.

    P. Rajalingam andG. Radhakrishnan,J. Mater. Sci. Rev. Macromol. Chem. Phys. C31 (1991) 301.

  5. 5.

    J. G. Venner andY. S. Ko, US Patent 4 938 941 (1990).

  6. 6.

    G. Pan, N. Muto, M. Miyayama andH. Yanagida,J. Mater. Sci. 27 (1992) 3497.

  7. 7.

    Idem., J. Mater. Sci. Lett. 12 (1993) 666.

  8. 8.

    H. A. Goldberg, I. L. Kalnin, C. C. Williams andI. L. Spain, US Patent 4 642 664 (1987).

  9. 9.

    N. Muto, M. Miyayama, H. Yanagida, N. Mori, T. Kajiwara, Y. Imai, A. Urano andH. Ichikawa,Sensors and Mater. 2 (1991) 313.

  10. 10.

    P. J. Goodhew, A. J. Clarke andJ. E. Bailey,Mater. Sci. Engng. 17 (1975) 3.

  11. 11.

    M. K. Jain, M. Balasubramanian, P. Desai andA. S. Abhiraman,J. Mater. Sci. 22 (1987) 301.

  12. 12.

    T. Uchida, I. Shinoyama, Y. Ito andK. Nakuda in Proceedings of the 10th Biennial Conference on Carbon (Bethlehem, PA, 1977) p. 31.

  13. 13.

    T. H. Ko, T. C. Day andJ. A. Perng,Carbon 31 (1993) 765.

  14. 14.

    T. H. Ko andK. W. Hone,Sampe J. 28 (1992) 17.

Download references

Author information

Correspondence to Bor Z. Jang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, L., Jang, B.Z. Fabrication, structure and properties of quasi-carbon fibres. J Mater Sci 30, 4535–4540 (1995). https://doi.org/10.1007/BF01153059

Download citation

Keywords

  • Polymer
  • Mechanical Property
  • Activation Energy
  • Heat Treatment
  • Tensile Strength