Advertisement

International Journal of Fracture

, Volume 25, Issue 1, pp 69–77 | Cite as

On the expansion of a penny-shaped crack by a rigid circular disc inclusion

  • A. P. S. Selvadurai
  • B. M. Singh
Article

Abstract

This paper examines the problem of the symmetric indentation of a penny-shaped crack by a smoothly embedded rigid circular thin disc inclusion. The analysis of the problem yields a system of triple integral equations which are solved in an approximate manner. An expression for the stress intensity factor at the boundary of the penny-shaped crack is evaluated in the form of a series which involves the ratio of the radius of the rigid circular inclusion to the radius of the penny-shaped crack.

Keywords

Mechanical Engineer Integral Equation Civil Engineer Stress Intensity Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Dans le mémoire, on examine le problème du marquage symétrique d'une fissure en angle noyée par une inclusion mince et lisse, en forme de disque circulaire rigide. L'analyse du problème conduit à un système d'équations intégrales triples, que l'on résoud par approximations. On obtient une expression du facteur d'intensité de contrainte aux frontières de la fissure sous la forme d'une série comportant le rapport du rayon de l'inclusion rigide circulaire au rayon de la fissure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I.N. Sneddon,Proceedings of the Royal Society Series A, 187 (1946) 220–260.Google Scholar
  2. [2]
    G.I. Barenblatt, inAdvances in Applied Mechanics, VII (ed. H.L. Dryden and Th. von Karman), Academic Press, New York (1962) 55–129.Google Scholar
  3. [3]
    I.N. Sneddon and M. Lowengrub,Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons Inc., New York (1969).Google Scholar
  4. [4]
    M.K. Kassir and G.C. Sih, inMechanics of Fracture (ed. G.C. Sih) 2, Noordhoff, Leyden (1975).Google Scholar
  5. [5]
    G.P. Cherepanov,Mechanics of Brittle Fracture (Trans. ed. R. de Wit and W.C. Cooley) McGraw-Hill, New York (1979).Google Scholar
  6. [6]
    A.E.H. Love,A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, London (1927).Google Scholar
  7. [7]
    Y.C. Fung,Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey (1965).Google Scholar
  8. [8]
    I.N. Sneddon,Fourier Transforms, McGraw-Hill, New York (1951).Google Scholar
  9. [9]
    J.C. Cooke,Quarterly Journal of Mechanics and Applied Mathematics 16 (1963) 193–203.Google Scholar
  10. [10]
    W.E. Williams,Proceedings Edinburgh Mathematical Society Series 2, 13 (1963) 317–323.Google Scholar
  11. [11]
    C.J. Tranter,Proceedings Glasgow Mathematical Association 4 (1960) 200–203.Google Scholar
  12. [12]
    I.N. Sneddon,Mixed Boundary Value Problems in Potential Theory, North Holland, Amsterdam (1966).Google Scholar
  13. [13]
    R.P. Kanwal,Linear Integral Equations: Theory and Technique, Academic Press, New York (1971).Google Scholar
  14. [14]
    B. Noble,Journal of Mathematics and Physics 37 (1958) 128–136.Google Scholar
  15. [15]
    I.N. Sneddon,Proceedings Cambridge Philosophical Society 61 (1965) 609–611.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1984

Authors and Affiliations

  • A. P. S. Selvadurai
    • 1
  • B. M. Singh
    • 1
  1. 1.Department of Civil EngineeringCarleton UniversityOttawaCanada

Personalised recommendations