Journal of Fluorescence

, Volume 5, Issue 4, pp 307–319

Nonradiative excitation energy transport in one-component disordered systems

  • Piotr Bojarski
  • Leszek Kulak
  • Czeslaw Bojarski
  • Alfons Kawski
Article

Abstract

High-accuracy Monte Carlo simulations of the time-dependent excitation probabilityGs(t) and steady-state emission anisotropyrM/r0M for one-component three-dimensional systems were performed. It was found that the values ofrM/r0M obtained for the averaged orientation factor\(\overline {\kappa ^2 } \) only slightly overrate those obtained for the real values of the orientation factor κik2. This result is essentially different from that previously reported. Simulation results were compared with the probability coursesGs(t) andR(t) obtained within the frameworks of diagrammatic and two-particle Huber models, respectively. The results turned out to be in good agreement withR(t) but deviated visibly fromGs(t) at long times and/or high concentrations. Emission anisotropy measurements on glycerolic solutions of Na-fluorescein and rhodamine 6G were carried out at different excitation wavelengths. Very good agreement between the experimental data and the theory was found, with λex≈λ0-0 for concentrations not exceeding 3.5·10−2 and 7.5·10−3M in the case of Na-fluorescein and rhodamine 6G, respectively. Up to these concentrations, the solutions investigated can be treated as one-component systems. The discrepancies observed at higher concentrations are caused by the presence of dimers. It was found that forλex0-0 (Stokes excitation) the experimental emission anisotropies are lower than predicted by the theory. However, upon anti-Stokes excitation (λex0-0), they lie higher than the respective theoretical values. Such a dispersive character of the energy migration can be explained qualitatively by the presence of fluorescent centers with 0-0 transitions differing from the “mean” at λ0-0.

Key words

Energy migration Monte Carlo simulation fluorescence decay emission anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Knox (1968)Physica 39, 361–386.Google Scholar
  2. 2.
    V. L. Ermolaev, J. N. Bodunov, J. B. Sveshnikova, and T. A. Shahverdov (1977)Nonradiative Electronic Excitation Energy Transfer, MIR, Leningrad (in Russian).Google Scholar
  3. 3.
    A. Kawski (1983)Photochem. Photobiol. 38, 487–508.Google Scholar
  4. 4.
    C. Bojarski and K. Sienicki (1990) in J. F. Rabek (ed.),Photochemistry and Photophysics, Vol. 1, CRC Press, Boca Raton, FL, pp. 1–57.Google Scholar
  5. 5.
    D. L. Huber, D. S. Hamilton, and D. Barnett (1977)Phys. Rev. B 16, 4642–4650.Google Scholar
  6. 6.
    C. R. Gochanour, H. C. Andersen, and M. D. Fayer (1979)J. Chem. Phys. 70, 4254–4271.Google Scholar
  7. 7.
    J. Knoester and J. E. Van Himbergen (1984)J. Chem. Phys. 81, 4380–4388.Google Scholar
  8. 8.
    R. Twardowski and C. Bojarski (1985)J. Lumin. 33, 79–85.Google Scholar
  9. 9.
    A. I. Burstein (1985)J. Luminesc. 34, 201–209.Google Scholar
  10. 10.
    C. Bojarski and J. Domsta (1971)Acta Phys. Acad. Sci. Hung. 30, 145–166.Google Scholar
  11. 11.
    R. Twardowski, J. Kuśba, and C. Bojarski (1982)Chem. Phys. 64, 239–248.Google Scholar
  12. 12.
    R. F. Loring, H. C. Andersen, and M. D. Fayer (1982)J. Chem. Phys. 76, 2015–2027.Google Scholar
  13. 13.
    C. Bojarski (1984)Z. Naturforsch. 39, 948–951.Google Scholar
  14. 14.
    R. Twardowski and J. Kuśba (1988)Z. Naturforsch. 43, 627–632.Google Scholar
  15. 15.
    K. Sienicki and M. A. Winnik (1988)Chem. Phys. 121, 163–174.Google Scholar
  16. 16.
    E. N. Bodunov (1977)Zh. Prikl. Spektrosk. 26, 1123–1125.Google Scholar
  17. 17.
    E. N. Bodunov (1981)Opt. Spektrosk. 50, 1007–1009.Google Scholar
  18. 18.
    C. R. Gochanour and M. D. Fayer (1981)J. Phys. Chem. 85, 1989–1994.Google Scholar
  19. 19.
    G. H. Fredrickson (1988)J. Chem. Phys. 88, 5291–5299.Google Scholar
  20. 20.
    J. Riehl (1985)J. Am. Chem. Soc. 89, 3203–3206.Google Scholar
  21. 21.
    J. Bauman and M. D. Fayer (1986)J. Chem. Phys. 85, 4087–4107.Google Scholar
  22. 22.
    P. Anfinrud, D. Hart, J. Hedstrom, and W. Struve (1986)J. Phys. Chem. 90, 2374–2379.Google Scholar
  23. 23.
    S. Bloński, K. Sienicki, and C. Bojarski (1986)in Proc. Int. Symp. Mol. Luminesc, Photophys., Toruń, Poland, pp. 57–60.Google Scholar
  24. 24.
    D. Hart, P. Anfinrud, and W. Struve (1987)J. Chem. Phys. 86, 2689–2696.Google Scholar
  25. 25.
    S. Engstrom, M. Lindberg, and L. B. A. Johansson (1992)J. Chem. Phys. 96, 7528–7534.Google Scholar
  26. 26.
    M. D. Galanin (1950)Trudy Fiz. Inst. Akad. Nauk USSR 5, 341–344.Google Scholar
  27. 27.
    A. Jabloński (1970)Acta Phys. Polon. A38, 453–458.Google Scholar
  28. 28.
    E. L. Eriksen and A. Ore (1967)Phys. Norv. 2, 159–171.Google Scholar
  29. 29.
    R. P. Hemenger and R. M. Pearlstein (1973)J. Chem. Phys. 59, 4064–4072.Google Scholar
  30. 30.
    H. Stehfest (1970)Commun. Assoc. Comput. Math. 13, 47.Google Scholar
  31. 31.
    Th. Förster (1948)Ann. Phys. (Leipzig) 2, 55–75.Google Scholar
  32. 32.
    J. Knoester and J. E. Van Himbergen (1987)J. Chem. Phys. 86, 4438–4441.Google Scholar
  33. 33.
    J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  34. 34.
    A. Raltson (1965)First Course in Numerical Analysis, McGraw-Hill, New York.Google Scholar
  35. 35.
    K. Sienicki, S. Bloński, and G. Durocher (1991)J. Phys. Chem. 95, 1576–1579.Google Scholar
  36. 36.
    S. Bloński and K. Sienicki (1991)J. Phys. Chem. 95, 7353–7357.Google Scholar
  37. 37.
    F. N. Craver and R. S. Knox (1971)Mol. Phys. 22, 385–402.Google Scholar
  38. 38.
    F. W. Craver (1971)Mol. Phys. 22, 403–420.Google Scholar
  39. 39.
    S. Engstrom, M. Lindberg, and L. B. A. Johansson (1988)J. Chem. Phys. 89, 204–213.Google Scholar
  40. 40.
    Th. Förster (1957)Z. Elektrochem. 61, 344–348.Google Scholar
  41. 41.
    L. Gomez-Jahn, J. Kasiński, and R. D. J. Miller (1985) Colloque C7,Suppl. J. Phys. Fasc. 10(46), 85–90.Google Scholar
  42. 42.
    C. Bojarski, J. Grabowska, L. Kulak, and J. Kuśba (1991)J. Fluoresc. 1, 183–191.Google Scholar
  43. 43.
    C. Bojarski (1972)J. Luminesc. 5, 372–378.Google Scholar
  44. 44.
    D. R. Lutz, K. A. Nelson, C. R. Gochanour, and M. D. Fayer (1981)Chem. Phys. 58, 325–334.Google Scholar
  45. 45.
    C. Bojarski and G. Obermueller (1976)Acta Phys. Pol. A50, 389–411.Google Scholar
  46. 46.
    C. Bojarski and G. Zurkowska (1988)Z. Naturforsch. 43a, 297–301.Google Scholar
  47. 47.
    C. Bojarski and E. Grabowska (1981)Acta Phys. Pol. A60, 397–406.Google Scholar
  48. 48.
    I. Ketskemety, J. Dombi, R. Horvai, J. Hevesi, and L. Kozma (1961)Acta Phys. Chem. (Szeged) 7, 17–24.Google Scholar
  49. 49.
    A. Budó and I. Ketskeméty (1957)Acta Phys. Hung. 7, 207–223; A. Budó and I. Ketskeméty (1962)Acta Phys. Hung. 14, 167–176.Google Scholar
  50. 50.
    A. Kubicki (1989)Exp. Tech. Phys. 37, 329–333.Google Scholar
  51. 51.
    P. Bojarski and A. Kawski (1992)J. Fluoresc. 2(2), 133–139.Google Scholar
  52. 52.
    C. Bojarski and J. Dudkiewicz (1972)Z. Naturforsch. 27a, 1751–1755.Google Scholar
  53. 53.
    J. D. Demas and G. A. Crosby (1971)J. Phys. Chem. 75, 991–1024.Google Scholar
  54. 54.
    D. E. Dale and R. K. Bauer (1971)Acta Phys. Polon. A40, 853–882.Google Scholar
  55. 55.
    C. Bojarski and J. Dudkiewicz (1971)Z. Naturforsch. 26a, 1028–1031.Google Scholar
  56. 56.
    I. Lopez Arbeloa (1981)J. Chem. Soc. Faraday Trans. 77, 1725–1733.Google Scholar
  57. 57.
    J. Kamiński, A. Kawski, and A. Schmillen (1977)Z. Naturforsch. 32a, 1335–1338.Google Scholar
  58. 58.
    J. Kamiński, A. Schmillen, and A. Kawski (1978)Z. Naturforsch. 33a, 1001–1005.Google Scholar
  59. 59.
    J. Kamiński (1985)Acta Phys. Polon. A67, 679–700, 701–717.Google Scholar
  60. 60.
    G. Weber (1960)Biochem. J. 75, 335–345.Google Scholar
  61. 61.
    W. Galley and R. M. Purkey (1970)Proc. Natl. Acad. Sci. USA 67, 1116–1121.Google Scholar
  62. 62.
    A. N. Rubinov, V. I. Tomin, and B. A. Bushuk (1982)J. Luminesc. 26, 377–391.Google Scholar
  63. 63.
    C. Bojarski, J. Dudkiewicz, and A. Bujko (1974)Acta Phys. Chem. Szeged 20, 267–276.Google Scholar
  64. 64.
    A. Kawski and J. Kamiński (1975)Z. Naturforsch. 30a, 15–20.Google Scholar
  65. 65.
    J. Kamiński and A. Kawski (1977)Z. Naturforsch. 32a, 1329–1343.Google Scholar
  66. 66.
    N. Tamai, T. Yamazaki, and I. Yamazaki (1988)Chem. Phys. Lett. 147, 25–28.Google Scholar
  67. 67.
    A. D. Stein, K. A. Peterson, and M. D. Fayer (1989)Chem. Phys. Lett. 161, 16–22.Google Scholar
  68. 68.
    A. D. Stein, K. A. Peterson and M. D. Fayer (1990)J. Chem. Phys. 92, 5622–5635.Google Scholar
  69. 69.
    A. D. Stein and M. D. Fayer (1991)Chem. Phys. Lett. 176, 159–166.Google Scholar
  70. 70.
    J. Kuśba (1989)Z. Naturforsch. 44a, 821–824.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Piotr Bojarski
    • 1
  • Leszek Kulak
    • 2
  • Czeslaw Bojarski
    • 2
  • Alfons Kawski
    • 1
  1. 1.Institute of Experimental PhysicsUniversity of GdańskGdańsk, Wita Stwosza 57Poland
  2. 2.Department of Applied Mathematics and Technical PhysicsTechnical University of GdańskGdańsk, Majkowskiego 11/12Poland

Personalised recommendations