Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fracture tests in Mode I on fibre-reinforced plastics

  • 46 Accesses

  • 15 Citations

Abstract

The characterization of crack growth (Mode I) in glass fibre-reinforced materials is difficult because neither the crack length nor the crack tip can be assessed with sufficient accuracy because of delamination and bridging of broken and unbroken fibres. Hence linear elastic fracture mechanics cannot be employed. A new testing technique is reported, to characterize the crack growth in Mode I under quasistatic loading conditions in terms of fracture mechanics. The tests and evaluation procedures are based on the fracture energy concept, which does not require knowledge of the exact crack length. Experiments were performed at room temperature and 77 K, on a two-dimensionally glass fibre-reinforced epoxy (ISOVAL 10). The splitting test method proposed in the present work is experimentally simple; the loading device and the sample geometry are small and well suited for measurements at low temperatures on both unirradiated or irradiated samples. Results of acoustic emission and fractographic examinations, as well as investigations on the specimen-size dependence of the measured fracture mechanical quantities, are presented. Advantages and disadvantages of the new technique are discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. Lau, H. H. Abdelmohsen andM. K. Abdelsalam,Adv. Cryog. Engng 34 (1988) 83.

  2. 2.

    S. M. Lee,J. Compos. Mater. 20 (1986) 185.

  3. 3.

    S. Hashemi, A. J. Kinloch andJ. G. Williams,Compos. Sci. Tech. 37 (1990) 429.

  4. 4.

    Idem, Proc. R. Soc. Lond. A 427 (1990) 173.

  5. 5.

    A. C. Garg,Engng Fract. Mech. 23 (1986) 719.

  6. 6.

    A. C. Garg andO. Ishai,ibid. 22 (1985) 413.

  7. 7.

    Idem, ibid. 22 (1985) 595.

  8. 8.

    Y. Kagawa, E. Nakata andS. Yoshida, ASTM STP 864 (American Society for Testing and Materials, Philadelphia, PA, 1985) p. 27.

  9. 9.

    A. Daimaru, T. Hata andM. Taya,ibid. p. 505.

  10. 10.

    S. M. Jeng, J. M. Yang andC. J. Yang,Mater. Sci. Engng A 138 (1991) 181.

  11. 11.

    C. G. Aronsson andJ. Bäcklund,J. Compos. Mater. 20 (1986) 287.

  12. 12.

    Idem, ASTM STP 907 (American Society for Testing and Materials, Philadelphia, PA, 1986) p. 134.

  13. 13.

    A. Hillerborg, in Proceedings of “Fracture Mechanics of Concrete, Developments in Civil Engineering”, Vol. 7 edited by F. Wittmann (Elsevier, Amsterdam, 1983) p. 223.

  14. 14.

    Idem, Mater. Construct. 18 (1985) 25.

  15. 15.

    P. E. Roelfstra, Thesis, Ecole Polytechnique Federale de Lausane (1989).

  16. 16.

    B. Hillemeier, Thesis, University of Karlsruhe (1976).

  17. 17.

    E. K. Tschegg, Aust. Pat. 233/86, 390 328 (1986).

  18. 18.

    Idem, Mater. Test.33 (1991) 338.

  19. 19.

    E. K. Tschegg, K. Humer andH. W. Weber,Adv. Cryog. Engng 38A (1992) 355.

  20. 20.

    H. N. Linsbauer andE. K. Tschegg: Final report A1, COST 502, No. HNL-01-89 (1989).

  21. 21.

    E. K. Tschegg,ASTM J. Test. Eval. (1991) submitted.

  22. 22.

    E. K. Tschegg, K. Humer andH. W. Weber,Cryogenics 31 (1991) 312.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tschegg, E.K., Humer, K. & Weber, H.W. Fracture tests in Mode I on fibre-reinforced plastics. J Mater Sci 28, 2471–2480 (1993). https://doi.org/10.1007/BF01151682

Download citation

Keywords

  • Acoustic Emission
  • Crack Length
  • Fracture Energy
  • Linear Elastic Fracture Mechanic
  • Fracture Test