Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chemical applications of topology and group theory

14. Topological aspects of chaotic chemical reactions

  • 68 Accesses

  • 12 Citations


Earlier approaches to the analysis of chemical dynamic systems using kinetic logic are refined to deal more effectively with systems having the two or more feedback circuits required for chaos. The essential kinetic features of such a system can be represented by a directed graph (called aninfluence diagram) in which the vertices represent the internal species and the directed edges represent kinetic relationships between the internal species. Influence diagrams characteristic of chaotic chemical systems have the following additional features: (1) They are connected; (2) Each vertex has at least one edge directed towards it and one edge directed away from it; (3) There is at least one vertex, called a turbulent vertex, with at least two edges directed towards it. From such an influence diagram a state transition diagram representing the qualitative dynamics of the system can be obtained using the following 4-step procedure: (1) A logical relationship is assigned at each turbulent vertex; (2) A local truth table is generated for each circuit in the influence diagram; (3) The local truth tables are combined to give a global truth table using the logical relationships at the turbulent vertices; (4) The global truth table is used to determine the corresponding state transition diagram using previously described methods. This refined procedure leads to a more restricted set of influence diagrams having the interlocking cycle flow topology required for chaos than the procedure described earlier. Systems with 3 internal species are examined in detail using the refined procedure. All systems with 3 dynamic variables shown in the simulation studies of Rössler to give chaotic dynamics correspond to influence diagrams which give inter-locking cycle (chaotic) flow topologies by the refined procedure. In addition, two models for the Belousov-Zhabotinskii reaction are examined using the refined procedure. The results are potentially informative concerning possible mechanisms for the limitation of the accumulation of autocatalytically produced HBrO2 (one of the internal species) during the course of this reaction.

This is a preview of subscription content, log in to check access.


  1. 1.

    Nicolis, G., Portnow, J.: Chem. Revs.73, 365 (1973)

  2. 2.

    Noyes, R. M., Field, R. J.: Ann. Rev. Phys. Chem.25, 95 (1974)

  3. 3.

    Noyes, R. M.: Ber. Bunsenges. Phys. Chem.84, 295 (1980)

  4. 4.

    Schmitz, R. A., Graziani, K. R., Hudson, J. L.: J. Chem. Phys.67, 3040 (1977)

  5. 5.

    Hudson, J. L., Hart, M., Marinko, D.: J. Chem. Phys.71, 1601 (1979)

  6. 6.

    Hudson, J. L., Mankin, J. C.: J. Chem. Phys.74, 6171 (1981)

  7. 7.

    Lorenz, E. N.: J. Atmos. Sci.20, 130 (1963)

  8. 8.

    Rössler, O. E.: Z. Naturforsch.31a, 397 (1976)

  9. 9.

    Rössler, O. E.: Z. Naturforsch.31a, 1664 (1976)

  10. 10.

    Rössler, O. E.: Phys. Letters57A, 397 (1976)

  11. 11.

    Rössler, O. E.: Lect. Appl. Math.17, 141 (1979)

  12. 12.

    Rössler, O. E.: Ann. N. Y. Acad. Sci.316, 376 (1979)

  13. 13.

    Clarke, B. L.: J. Chem. Phys.60, 1481 (1974)

  14. 14.

    Clarke, B. L.: Advan. Chem. Phys.43, 1 (1980)

  15. 15.

    Caldwell, S. H.: Switching circuits and logical design. New York: Wiley 1958, 1967

  16. 16.

    Hu, S.-T.: Mathematical theory of switching circuits and automata. Berkeley and Los Angeles: California Press 1968

  17. 17.

    Glass, L., Kauffman, S. A.: J. Theor. Biol.39, 103 (1973)

  18. 18.

    Glass, L.: J. Theor. Biol.54, 85 (1975)

  19. 19.

    Glass, L.: J. Chem. Phys.63, 1325 (1975)

  20. 20.

    Glass, L.: in: Statistical mechanics, Pt. B. Berne, B. J. Ed. New York: Plenum Press 1977

  21. 21.

    Glass, L.: in: Statistical mechanics and statistical methods in theory and application, Landman, U. Ed. New York: Plenum Press 1977

  22. 22.

    Glass, L., Pasternack, J. S.: J. Math. Biol.6, 207 (1978)

  23. 23.

    King, R. B.: Theoret. Chim. Acta (Berl.)56, 269 (1980)

  24. 24.

    Thomas, R.: Kinetic logic. Berlin: Springer 1979

  25. 25.

    King, R. B.: J. Theor. Biol.98, 347 (1982)

  26. 26.

    Hirsch, M. W., Smale, S.: Differential equations, dynamical systems, and linear algebra. New York: Academic Press 1974

  27. 27.

    Robert, F. S.: Discrete mathematical models. Englewood Cliffs, New Jersey: Prentice-Hall 1973

  28. 28.

    Bornmann, L., Busse, H., Hess, B.: Z. Naturforsch.28c, 514 (1973)

  29. 29.

    Tyson, J. J.: Ann. N. Y. Acad. Sci.316, 279 (1979)

  30. 30.

    Field, R. J., Körös, E., Noyes, R. M.: J. Am. Chem. Soc.94, 8649 (1972)

  31. 31.

    Tomita, K., Tsuda, I.: Phys. Letters71A, 489 (1979)

  32. 32.

    Field, R. J., Noyes, R. M.: J. Chem. Phys.60, 1877 (1974)

  33. 33.

    Ganapathisubramanian, N., Noyes, R. M.: J. Chem. Phys.76, 1770 (1982)

Download references

Author information

Additional information

For part 13 of this series see R. B. King, Theoret. Chim. Acta (Berl.) 63, 103–132 (1983)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, R.B. Chemical applications of topology and group theory. Theoret. Chim. Acta 63, 323–338 (1983). https://doi.org/10.1007/BF01151610

Download citation

Key words

  • Dynamic systems
  • Chaotic chemical reactions
  • Kinetic logic
  • Turbulence
  • Belousov-Zhabotinskii reaction