Journal of Soviet Laser Research

, Volume 8, Issue 3, pp 189–282 | Cite as

Neodymium activated yttrium-aluminum-garnet (YAG:Nd) lasers

  • G. M. Zverev
  • Yu. D. Golyaev
  • E. A. Shalaev
  • A. A. Shokin


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Letokhov and N. D. Ustinov, High-Power Lasers and Their Use [in Russian], Sov. Radio, Moscow (1980).Google Scholar
  2. 2.
    V. T. Zagorodnyuk and D. Ya. Parshin, Effective Coupling of Lasers with Commerical Objects [in Russian], Svyaz', Moscow (1979).Google Scholar
  3. 3.
    L. V. Tarasov, Lasers and Their Use [in Russian], Radio i Svyaz', Moscow (1983).Google Scholar
  4. 4.
    G. A. Machulka, Machining Glass with Lasers [in Russian], Sov. Radio, Moscow (1973).Google Scholar
  5. 5.
    J. F. Ready, Commercial Applications of Lasers [Russian translation], Mir, Moscow (1981).Google Scholar
  6. 6.
    A. S. Batarov, M. M. Butusov, G. P. Grechka, and D. P. Luk'yanov (eds.), Laser-Based Measuring Systems [in Russian], Radio i Svyaz', Moscow (1981).Google Scholar
  7. 7.
    B. F. Fedorov, Laser Instruments and Systems for Aircraft [in Russian], Mashinostroenie, Moscow (1979).Google Scholar
  8. 8.
    F. Kaczmarek, Introduction to Laser Physics [Russian translation], M. F. Bukhenskii (ed.), Mir, Moscow (1981).Google Scholar
  9. 9.
    M. Francon and S. Salanski, Coherence in Optics [Russian translation], K. S. Shifrin (ed.), Nauka, Moscow (1967).Google Scholar
  10. 10.
    N. N. Kaliteevskii, Wave Optics [in Russian], Nauka, Moscow (1971).Google Scholar
  11. 11.
    M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford (1970).Google Scholar
  12. 12.
    J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser applications in Nd-doped yttrium gallium garnets,” Appl. Phys. Lett.,4, 182–184 (1954).Google Scholar
  13. 13.
    E. G. Erickson, “Holobeam Reports 760-W cw from a segmented Nd:YAG system,” Laser Focus,4, 16 (1970).Google Scholar
  14. 14.
    V. Vasil'ev, S. V. Zinov'ev, D. V. Smirnov, et al., “Laser-plasma x-ray source,” Abstracts, III All-Union Conf. on Laser Optics, Leningrad (1981), pp. 179–180.Google Scholar
  15. 15.
    T. A. Fleck, “Ultra short-pulse generation by Q-switched laser,” Phys. Rev.,B1, No. 1, 84–100 (1970).Google Scholar
  16. 16.
    V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics [in Russian], Radio i Svyaz', Moscow (1982).Google Scholar
  17. 17.
    F. Zernike and J. Midwinter, Applied Nonlinear Optics, Wiley (1973).Google Scholar
  18. 18.
    O. Svelto, Principles of Lasers, Plenum, New York (1976).Google Scholar
  19. 19.
    L. V. Tarasov, Physics of Processes in Generators of Coherent Optical Radiation [in Russian], Radio i Svyaz', Moscow (1981).Google Scholar
  20. 20.
    R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics, Wiley, New York (1969).Google Scholar
  21. 21.
    A. L. Mikaelyan, M. L. Ter-Mikaelyan, and Yu. G. Turkov, Solid-State Lasers [in Russian], Sov. Radio, Moscow (1967).Google Scholar
  22. 22.
    A. A. Kaminskii, Laser Crystals [in Russian], Nauka, Moscow (1975).Google Scholar
  23. 23.
    R. J. Pressley (ed.), Handbook of Lasers, Chemical Rubber Publ., Cleveland (1971).Google Scholar
  24. 24.
    Kh. S. Bagdasarov, I. I. Karpov, and B. N. Grechushnikov, “Growth of YAG crystals,” in: Reviews of Electronic Technology [in Russian], TNII Elektronika, Moscow (1976).Google Scholar
  25. 25.
    B. N. Grechushnikov, I. I. Karpov, Kh. S. Bagdasarov, and Kh. S. Zverev, “Optical Properties of YAG crystals and their use in lasers,” in: Reviews of Electronic Technology [in Russian], TNII Elektronika, Moscow (1976).Google Scholar
  26. 26.
    M. Born, Atomic Physics [Russian translation], Mir, Moscow (1970).Google Scholar
  27. 27.
    M. Sakita and S. Kimura, “Induced emission cross section of Nd:Y3Al5O12 grown by floating zone method,” J. Appl. Phys.,54(6), 3415–3421 (1983).Google Scholar
  28. 28.
    T. Kushida, S. Kinoshita, T. Ohtsuki, and T. Yamada, “Multiphonon relaxation rate from pumped level to upper laser,” Solid-State Commun.,44, No. 9, 1303–1365 (1982).Google Scholar
  29. 29.
    W. Krupke, “Assessment of promethium,” IEEE J. Quantum Electron.,8, No. 8, 725–726 (1972).Google Scholar
  30. 30.
    P. F. Liao and H. F. Weber, “Fluorescence quenching of4F3/2 state in Nd-doped yttrium aluminum garnet (YAG) by multiphonon relaxation,” J. Appl. Phys.,45, No. 7, 2931–2934 (1974).Google Scholar
  31. 31.
    B. I. Stepanov (ed.), Laser Design Methods [in Russian], Nauka i Tekhnika, Minsk (1966–1968).Google Scholar
  32. 32.
    A. Niklas and W. Telenski, “X-ray luminescence in YAG:Nd,” J. Phys. Stat. Sol., (a)77, 393 (1983).Google Scholar
  33. 33.
    Yu. D. Gulyaev, A. V. Trushetskii, L. N. Kaptsov, and V. A. Sokolov, “Mode pulling in a neodymium-garnet laser,” Pis'ma Zh. Tekh. Fiz.,3, No. 22, 1226–1229 (1977).Google Scholar
  34. 34.
    N. I. Polushkin, P. A. Khandokhin, and Ya. I. Khanin, “Influence of gain-line structure on laser dynamics of a solid-state ring laser,” Kvantovaya Elektron. (Moscow),10, No. 7, 1461–1464 (1983).Google Scholar
  35. 35.
    V. G. Dmitriev, N. V. Umanskii, and N. V. Shkunov, “Technical stresses in active elements under cw pumping conditions,” Kvantovaya Elektron. (Moscow), No. 2, 80–86 (1971).Google Scholar
  36. 36.
    W. Koechner, “Absorbed pump-power thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt.,9, No. 6, 1429–1434 (1970).Google Scholar
  37. 37.
    T. D. Foster and L. M. Osterink, “Thermal effects in Nd:YAG laser,” J. Appl. Phys.,41, No. 9, 3656–3666 (1970).Google Scholar
  38. 38.
    V. N. Bykov, N. N. Groshkova, V. R. Kushnir, and N. V. Shkunov, “Distortions of thermally induced lens of active elements in illuminators,” Elektron. Tekh., Ser. 11, No. 1, 64–68 (1978).Google Scholar
  39. 39.
    W. Ooechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as function of growth direction,” J. Opt. Soc. Am.,61, No. 6, 758–766 (1971).Google Scholar
  40. 40.
    Yu. D. Golyaev, K. N. Evtyukhov, and L. N. Kaptsov, “Induced anisotropy in active elements of neodymium-doped garnet,” Vestn. Mosk. Univ. Ser. Fiz. Astron.,21, 29–35 (1980).Google Scholar
  41. 41.
    Ya. A. Khanin, Dynamics of Quantum Generators [in Russian], Sov. Radio, Moscow (1975).Google Scholar
  42. 42.
    K. G. Folin and A. V. Gainer, Dynamics of Free Lasing of Solid-State Lasers [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  43. 43.
    A. R. Globes and H. T. Brienza, “Single mode traveling-wave YAG laser,” Appl. Phys. Lett.,21, No. 6, 265–267 (1972).Google Scholar
  44. 44.
    A. A. Mak and V. I. Ustyugov, “Spontaneous single-frequency lasing of solid-state ring laser,” Pis'ma Zh. Eksp. Teor. Fiz.,18, No. 4, 253–255 (1973).Google Scholar
  45. 45.
    A. N. Klochan, “Spectral characteristics of cw YAG:Nd solid-state ring laser,” Radiotekh. Elektron.,10, 2096–2104 (1974).Google Scholar
  46. 46.
    A. Yariv, Quantum Electronics, Wiley, New York (1967).Google Scholar
  47. 47.
    S. Yoshikawa, K. Iwamoto, and K. Washio, “Efficient arc lamps for optical pumping of neodymium laser,” Appl. Opt.,10, No. 7, 1620–1623 (1971).Google Scholar
  48. 48.
    J. R. Oliver and F. S. Barnes, “Rare gas pumping efficiencies for neodymium laser,” IEEE J. Quantum. Electron., May 1969, pp. 225–231.Google Scholar
  49. 49.
    B. R. Belostotskii, Yu. V. Lyubavskii, and V. M. Ovchinnikov, Fundamentals of Laser Engineering [in Russian], A. M. Prokhorov (ed.), Sov. Radio, Moscow (1972).Google Scholar
  50. 50.
    A. Maitland and M. Dann, Introduction to Laser Physics [Russian translation], Nauka, Moscow (1978).Google Scholar
  51. 51.
    Yu. A. Anan'ev, Optical Cavities and the Problem of Laser-Beam Divergence [in Russian], Nauka, Moscow (1979).Google Scholar
  52. 52.
    S. G. Zeiger, Yu. L. Klimonotovich, P. S. Landa, et al., Wave and Fluctuation Processes in Lasers [in Russian], Yu. L. Klimontovich (ed.), Nauka, Moscow (1974).Google Scholar
  53. 53.
    I. M. Babakov, Theory of Oscillations [in Russian], Nauka, Moscow (1968).Google Scholar
  54. 54.
    S. A. Akhmanov, Yu. D. Golyaev, and S. V. Lantratov, “Use of lasers in modulation spectroscopy,” Kvantovaya Elektron. (Moscow),5, No. 6, 1329–1340 (1978).Google Scholar
  55. 55.
    Yu. D. Golyaev and S. V. Lantratov, “Spike lasing regimes in neodymium-garnet lasers,” Kvantovaya Elektron. (Moscow),1, No. 10, 2197–2210 (1974).Google Scholar
  56. 56.
    N. I. Polushkin, P. A. Khandokhin, and Ya. I. Khainin, “Influence of gain-line structure on the lasing dynamics of a solid-state ring laser,” Kvantovaya Elektron. (Moscow),10, No. 7, 1461–1463 (1983).Google Scholar
  57. 57.
    N. M. Galaktionova, A. A. Mak, and A. P. Khyuppenen, “Parasitic amplitude modulation of the emission of a stabilized YAG:Nd laser,” Zh. Tekh. Fiz.,154, No. 4, 770–777 (1974).Google Scholar
  58. 58.
    Yu. D. Golyaev and S. V. Lantratov, “Intensity fluctuations of radiation from multimode solid-state lasers with modulated resonator losses,” Kvantovaya Elektron. (Moscow),9, No. 11, 2361–2372 (1979).Google Scholar
  59. 59.
    E. M. Belenov, V. N. Morozov, and A. N. Oraevskii, “Problems in laser dynamics,” Tr. FIAN SSSR, No. 52, 237–337 (1970).Google Scholar
  60. 60.
    E. S. Kovalenko and A. V. Pugovkin, “On the theory of nonstationary oscillations in a laser,” Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz.,11, No. 2, 233–238 (1968).Google Scholar
  61. 61.
    V. A. Dement'ev, T. N. Zubarev, and A. N. Oraevskii, “Lasing dynamics,” Tr. FIAN SSSR,91, 3–74 (1977).Google Scholar
  62. 62.
    A. M. Ratner, Lasers with Large Beam Divergence [in Russian], Naukova Dumka, Kiev (1970).Google Scholar
  63. 63.
    D. E. McCumber, “Intensity fluctuations in the output in cw-laser oscillations,” Phys. Rev.,141, No. 1, 306–322 (1966).Google Scholar
  64. 64.
    V. V. Azarova, N. M. Galaktionov, A. A. Mak, et al., “Solid-state laser-radiation noise,” Kvantovaya Elektron. (Moscow),9, No. 11, 2339–2348 (1979).Google Scholar
  65. 65.
    V. V. Azarova, A. A. Kalmychek, O. A. Orlov, and V. I. Ustyugov, “Active stabilization of cw YAG:Nd laser,” Pis'ma Zh. Tekh. Fiz.,5, No. 11, 659–663 (1979).Google Scholar
  66. 66.
    T. N. Vinokurov, N. M. Galaktionova, V. F. Egorova, et al., “Spike structure of solid-state laser radiation,” Zh. Eksp. Teor. Fiz.,60, 489–499 (1971).Google Scholar
  67. 67.
    Yu. D. Golyaev, K. N. Evtyukhov, and L. N. Kaptsov, “Stabilization of cw neodymium-garnet-laser radiation power,” Radiotekh. Elektron.,15, No. 1, 2467–2469 (1980).Google Scholar
  68. 68.
    Yu. D. Golyaev, A. V. Grushetskii, K. N. Evtyukhov, and L. N. Kaptsov, “Effect of thermal lens in a YAG crystal on the stability of a cw laser emission,” Vestn. Mosk. Univ. Ser. Fiz. Astron.,10, No. 2, 84–89 (1978).Google Scholar
  69. 69.
    Yu. D. Golyaev, K. N. Evyukhov, L. N. Kaptsov, and S. V. Lantratov, Combined system of frequency and radiation-power stabilization for a cw garnet laser,” Abstracts, 1st All-Union Conf. on Problems of Controlling Laser-Radiation Parameters (Part 2), Tashkent State Univ. (1978), pp. 173–175.Google Scholar
  70. 70.
    I. V. Volkov and V. M. Vakulenko, Electric Power Supplies for Lasers [in Russian], Tekhnika, Kiev (1976).Google Scholar
  71. 71.
    N. G. Vakhitov, “Electromagnetic oscillations in an open cavity consisting of flat mirrors and a dielectric prism placed between them,” Zh. Eksp. Teor. Fiz.,37, No. 2 242–253 (1967).Google Scholar
  72. 72.
    K. I. Tarasov, Spectral Instruments [in Russian], Mashinostroenie, Leningrad (1977).Google Scholar
  73. 73.
    A. N. Chester, “Tain thresholds for diffuse parasitic laser modes,” Appl. Opt.,12, No. 9, 2139 (1973).Google Scholar
  74. 74.
    P. Labudde, W. Seka, and H. P. Weber, “Gain increase in laser amplifiers by suppression of parasitic oscillations,” Appl. Phys. Lett.,29, No. 11, 732 (1976).Google Scholar
  75. 75.
    S. Marshak, S. V. Doinikov, V. I. Zhil'tsov, et al., Pulsed Light Sources [in Russian], I. S. Marshak (ed.), Énergiya, Moscow (1978).Google Scholar
  76. 76.
    V. I. Vasil'ev and I. S. Marshak, Collected Materials on Vacuum Techniques [in Russian], No. 14, Gosénergoizdat, Moscow-Leningrad (1958), pp. 19–52.Google Scholar
  77. 77.
    USSR Standard (GOST) 1968-74. Sources of High-Intensity Radiation. Terminology System.Google Scholar
  78. 78.
    L. E. Belousova, V. P. Kirsanov, and I. S. Marshak, “Concerning the strongest thermal pulsed tubular lamps,” Inzh.-Fiz. Zh.,9, No. 1, 105–111 (1965).Google Scholar
  79. 79.
    M. P. Vanyukov, A. N. Vorob'ev, and E. V. Daniel', “Influence of the products of electrode erosion of pulsed lamps on their strength,” Zh. Prikl. Spectrosk.,11, No. 4, 726–729 (1969).Google Scholar
  80. 80.
    V. P. Pryanishnikov, The Silica System [in Russian], Gosstroiizdat, Leningrad (1971).Google Scholar
  81. 81.
    V. A. Bernshtein and S. I. Novikov, “Submicrocrystalline inclusions and strength of amorphous brittle bodies,” Fiz. Tverd. Tela,17, No. 1, 241–246 (1975).Google Scholar
  82. 82.
    E. Ritter, in: Physics of Thin Films [Russian translation], G. Hass (ed.), Vol. 18, Mir, Moscow (1978).Google Scholar
  83. 83.
    D. L. Perry, “Low-loss multilayer dielectric mirrors,” Appl. Opt.,4, No. 8, 987 (1965).Google Scholar
  84. 84.
    A. J. Glass and A. H. Quenther, “Laser induced damage in optical materials,” 7th ASTM Symposium, Appl. Opt.,15, No. 6, 1510–1529 (1976).Google Scholar
  85. 85.
    J. M. Berthols, Three-layer broadband antireflection coating for NbSO3,” Appl. Opt.,9, No. 6, 1490–1491 (1970).Google Scholar
  86. 86.
    G. M. Zverev, G. Ya. Kolodnyi, and Yu. P. Poryadin, “Resistance of dielectric-coating interference mirrors to laser-induced damage,” Kvantovaya Elektron. (Moscow),5, No. 1, 44–50 (1978).Google Scholar
  87. 87.
    T. N. Krylova, Interference Coatings [in Russian], Mashinostroenie (1973).Google Scholar
  88. 88.
    T. Ya. Kolodnyi, E. A. Levchuk, B. B. Meshkov, and P. P. Yakovlev, “Synthesis of antireflection coatings by the direct search method,” Kvantovaya Elektron. (Moscow),5, No. 1, 83–89 (1978).Google Scholar
  89. 89.
    E. H. Turner, “High-frequency electrooptic coefficients of LiNbO3,” Appl. Phys.,8, No. 11, 303 (1966).Google Scholar
  90. 90.
    W. Koechner, Solid-State Engineering, Springer, Heidelberg (1976).Google Scholar
  91. 91.
    V. A. Pilipovich and A. A. Kovalov, Lasers with Antireflection Filters [in Russian], Nauka i Tekhnika, Minsk (1975).Google Scholar
  92. 92.
    T. T. Basiev, Yu. K. Voron'ko, S. B. Mironov, et al., Izv. Akad. Nauk SSSR,46, No. 8, 1600–1610 (1982).Google Scholar
  93. 93.
    W. R. Sooy, “The natural selection of modes in a passive Q-switched laser,” Appl. Phys. Lett.,7, 36 (1965).Google Scholar
  94. 94.
    D. Daly and D. Harleman, Fluid Mechanics [Russian translation], Énergiya, Moscow (1971).Google Scholar
  95. 95.
    M. A. Mikheev and I. M. Mikheeva, Fundamentals of Heat Transfer [in Russian], Énergiya, Moscow (1973).Google Scholar
  96. 96.
    L. S. Kremenchugskii, Ferroelectric Radiation Receivers [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  97. 97.
    A. I. Veinik, Engineering Thermodynamics and Fundamentals of Heat Transfer [in Russian], Metallurgiya, Moscow (1965).Google Scholar
  98. 98.
    R. H. Dishington, W. R. Hook, and R. P. Hilberg, “Flashlamp discharge and laser efficiency,” Appl. Opt.,13, No. 10, 2300 (1974).Google Scholar
  99. 99.
    A. S. Doinikov, Reviews of Electronic Technology. Electrovacuum and Gas-Discharge Devices [in Russian], No. 11 (1973), p. 154.Google Scholar
  100. 100.
    M. F. Stel'makh, “Latest achievements in laser technology,” Izv. Akad. Nauk SSSR,44, No. 8, 1670–1676 (1980).Google Scholar
  101. 101.
    G. M. Zverev, Yu. G. D'yakova, and A. A. Shokin, Solid-state YAG:Nd lasers for the national economy,” Electron. Prom., No. 5, 15–16 (1981).Google Scholar
  102. 102.
    V. A. Orlov, Lasers in Military Engineering [in Russian], Voenizdat, Moscow (1976).Google Scholar
  103. 103.
    V. E. Zuev, The Laser as a Meteorologist [in Russian], Gidrometeoizdat, Leningrad (1976).Google Scholar
  104. 104.
    E. D. Hinkle (ed.), Laser Control of the Atmosphere [Russian translation], Mir, Moscow (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • G. M. Zverev
  • Yu. D. Golyaev
  • E. A. Shalaev
  • A. A. Shokin

There are no affiliations available

Personalised recommendations