Neuroscience and Behavioral Physiology

, Volume 7, Issue 1, pp 56–62 | Cite as

The spectrum of the calling signals, phonotaxis, and the auditory system in the cricket Gryllus bimaculatus

  • A. V. Popov
  • V. F. Shuvalov
  • A. M. Markovich


In behavioral experiments with a Y labyrinth it was shown that phonotaxis in the female crickets in respect to the calling signals (CS) of the males depends on the spectrum of the signal. The necessary and sufficient condition for development of normal phonotaxis is the preservation of the first, low-frequency (LF) component of the spectrum (5 kHz). Signals with a time pattern identical to that of a CS but with a spectrum containing only the high-frequency (HF) component (12.5 kHz) do not evoke positive phonotaxis. HF signals in the frequency-range 10–40 kHz evoke negative phonotaxis in females under conditions of “tethered flight.” In the auditory system of the crickets, beginning with the tympanal organ, there is a clear separation of the elements effecting LF and HF signals. Two types of ascending interneurons transmitting acoustic information from the primary auditory center to the brain are described in detail. The first is connected primarily with LF receptors and transmits clearly all the time-dependent characteristics of the CS most important for recognition. The second apparently participates in the production of negative phonotaxis. It is connected primarily with HF receptors, has considerable after-effect and also raises sensitivity to sounds of low intensity, emphasizes the initial moment in the effect of a stimulus, and “habituates” rapidly to repeated stimulations.


Auditory System Clear Separation Behavioral Experiment Initial Moment Time Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. Regen, Pflügers Arch.,155, 193 (1913).Google Scholar
  2. 2.
    T. J. Walker, Ann. Entomol. Soc. Amer.,50, 626 (1957).Google Scholar
  3. 3.
    K. G. Hill, J. J. Loftus-Hills, and D. F. Gartside, Austr. J. Zool.,20, 153 (1972).Google Scholar
  4. 4.
    M. D. Zaretsky, J. Comp. Physiol.,79, 153 (1972).Google Scholar
  5. 5.
    V. F. Shuvalov and A. V. Popov, Zh. Tvol. Biokhim. Fiziol.,9, 177 (1973).Google Scholar
  6. 6.
    V. F. Shuvalov and A. V. Popov, Zool. Zh.,52, 1179 (1973).Google Scholar
  7. 7.
    K. G. Hill, J. Comp. Physiol.,93, 7 (1974).Google Scholar
  8. 8.
    B. Dumortier, in: Acoustic Behavior of Animals, R. G. Busnel (ed.), Elsevier, Amsterdam (1963), p. 583.Google Scholar
  9. 9.
    V. F. Shuvalov and A. V. Popov, Zh. Évol. Biokhim. Fiziol.,7, 612 (1971).Google Scholar
  10. 10.
    A. V. Popov, Zh. Evol. Biokhim. Fiziol.,9, 265 (1973).PubMedGoogle Scholar
  11. 11.
    A. V. Popov, V. F. Shuvalov, A. N. Knyazev, and N. A. Klar-Spasovskaya, Entomol. Obozr.,53, 258 (1974).Google Scholar
  12. 12.
    A. V. Popov, Tr. Vsesoyuzn. Éntomol. Obshch.,53, 182 (1969).Google Scholar
  13. 13.
    R. D. Zhantiev and V. S. Chukanov, Vestn. MGU, No. 2, 3 (1972).Google Scholar
  14. 14.
    C. Herbig, Arch. Mikr. Anat. Entwickl.,61, 697 (1903).Google Scholar
  15. 15.
    D. Young and E. Ball, Z. Zeilforsch.,147, 293 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. V. Popov
    • 1
  • V. F. Shuvalov
    • 1
  • A. M. Markovich
    • 1
  1. 1.Laboratory of the Physiology of Sensory Organs, I. M. Sechenov Institute of Evolutionary Physiology and BiochemistryAcademy of Sciences of the USSRLeningrad

Personalised recommendations