Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanism of noradrenalin liberation from the rat brain under the influence of nicotine

Abstract

Definite relationships were found between the noradrenalin concentration and Mg++-ATPase activity in the rat brain during the action of nicotine. It is suggested that Mg++-ATPase regulates the storage of noradrenalin in the tissue depots.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    O. V. Kirsenko and G. L. Vavilova, “Effect of detergents on Na+-K+-ATPase and in solubilization,” Ukr. Biokhim. Zh.,44, 125 (1972).

  2. 2.

    A. P. Orekhova, Chemistry of Alkaloids [in Russian], Moscow (1955), p. 859.

  3. 3.

    A. V. Palladin, O. V. Kirsenko, and G. L. Vavilova, “Na+-K+-Activated ATPase of the brain and its extraction by detergents,” Biokhimiya,35, 404 (1970).

  4. 4.

    U. S. Euler and J. Floding, “A fluorimetric micromethod for differential estimation of adrenaline and noradrenaline,” Acta Physiol. Scand.,33, Suppl. 118, 45 (1955).

  5. 5.

    U. S. Euler and F. Lishajko, “Reuptake of noradrenaline in isolated adrenergic nerve granules and the action of ATP,” Life Sci.,6, 2111 (1967).

  6. 6.

    U. S. Euler and F. Lishajko, “Catecholamine release and uptake in isolated adrenergic granules,” Acta Physiol. Scand.,57, 468 (1963).

  7. 7.

    M. Germain, “Adenosinetriphosphatase activity in synaptic vesicles of rat brain,” Biochem. Pharmacol.,14, 1815 (1965).

  8. 8.

    M. Hajvashi and J. Auditore, “Simple preparation and properties of Na+-K+-activated Mg++-ATPase from mouse brain,” J. Neurochem.,11, 671 (1964).

  9. 9.

    O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al., “Protein measurement with the Folin phenol reagent,” J. Biol. Chem.,193, 265 (1951).

  10. 10.

    A. Pletscher, K. Berneis, and M. De Prada, “Mechanisms of storage of catecholamines in subcellular organelles,” Experientia,27, 1117 (1971).

  11. 11.

    K. Rajan, J. Davis, and R. Calburn, “Metal chelates in the storage and transport of neurotransmitters: Interaction of metal ions with biogenic amines,” J. Neurochem.,18, 345 (1971).

  12. 12.

    E. de Robertis, G. Arhaiz, M. Liberici, et al., “Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex,” J. Biol. Chem.,242, 3487 (1967).

  13. 13.

    A. Tissari and D. Bogdanski, “Biogenic amine transport. VI. Comparison of effects of ouabain and K+-deficiency on the transport of 5-hydroxytryptamine and noradrenaline by synaptosomes,” Pharmacology,5, 225 (1971).

  14. 14.

    T. White and P. Keen, “The role of internal and external Na+ and K+ on the uptake of3H-noradrenaline by synaptosomes prepared from rat brain,” Biochim. Biophys. Acta,196, 285 (1970).

  15. 15.

    V. Whittaker, “The application of subcellular fractionation techniques to the study of brain function,” Prog. Biophys. Mol. Biol.,15, 39 (1965).

Download references

Additional information

Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 80, No. 8, pp. 42–44, August, 1975.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Semenov, E.V., Petrov, A.N. & Podosinovikova, M.P. Mechanism of noradrenalin liberation from the rat brain under the influence of nicotine. Neurosci Behav Physiol 7, 17–19 (1976). https://doi.org/10.1007/BF01148742

Download citation

Key words

  • ATPase
  • noradrenalin
  • knicotine